DOI QR코드

DOI QR Code

Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals

  • Eui-Man, Jung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Seung Hyun, Lee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Geun-Shik, Lee (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2022.08.23
  • Accepted : 2022.11.30
  • Published : 2023.03.02

Abstract

Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C100328611).

References

  1. Johnstone C, Hendry C, Farley A, McLafferty E. Endocrine system: part 1. Nursing Standard 2014;28:42-9. https://doi.org/10.7748/ns.28.38.42.e7471
  2. De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? General and Comparative Endocrinology 2016;226:56-71. https://doi.org/10.1016/j.ygcen.2015.12.016
  3. Galbiati M, Saredi S, Melcangi RC. Steroid hormones and growth factors act in an integrated manner at the levels of hypothalamic astrocytes: a role in the neuroendocrine control of reproduction. Annals of the New York Academy of Sciences 2003;1007:162-8. https://doi.org/10.1196/annals.1286.016
  4. Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagonlike peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scandinavian Journal of Gastroenterology 1996;31:665-70. https://doi.org/10.3109/00365529609009147
  5. Wurtman RJ, Axelrod J. Adrenaline synthesis: control by the pituitary gland and adrenal glucocorticoids. Science 1965;150:1464-5. https://doi.org/10.1126/science.150.3702.1464
  6. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity 2018;48:202-13. https://doi.org/10.1016/j.immuni.2018.01.007
  7. Chopra S, Cherian D, Jacob JJ. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension. Indian Journal of Endocrinology and Metabolism 2011;15(Suppl 4):S354-60. https://doi.org/10.4103/2230-8210.86979
  8. Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The hypothalamic-pituitary-adrenal Axis: development, programming actions of hormones, and maternal-fetal interactions. Frontiers in Behavioral Neuroscience 2020;14:601939.
  9. Yi Y-S. Ameliorative effects of ginseng and ginsenosides on rheumatic diseases. Journal of Ginseng Research 2019;43:335-41. https://doi.org/10.1016/j.jgr.2018.04.004
  10. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, Cho Y-L, Kwak Y-S. Characterization of Korean red ginseng (panax ginseng meyer): history, preparation method, and chemical composition. Journal of Ginseng Research 2015;39: 384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  11. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of Ginseng Research 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  12. Kim JH, Yi Y-S, Kim M-Y, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. Journal of Ginseng Research 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  13. Park SK, Hyun SH, In G, Park C-K, Kwak Y-S, Jang Y-J, Kim B, Kim J-H, Han C-K. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. Journal of Ginseng Research 2021;45:41-7. https://doi.org/10.1016/j.jgr.2020.09.006
  14. Kim Y-R, Yang C-S. Protective roles of ginseng against bacterial infection. Microbial Cell 2018;5:472.
  15. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. Journal of Ginseng Research 2016;40:309-14. https://doi.org/10.1016/j.jgr.2015.09.002
  16. Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean red ginseng on metabolic syndrome. Journal of Ginseng Research 2021;45:380-9. https://doi.org/10.1016/j.jgr.2020.11.002
  17. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee J-O, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. Journal of Ginseng Research 2021;45:199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  18. Chen W, Balan P, Popovich DG. Review of ginseng anti-diabetic studies. Molecules 2019;24:4501.
  19. Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H. Anticancer property of ginsenoside Rh2 from ginseng. European Journal of Medicinal Chemistry 2020;203:112627.
  20. Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY. Functional role of ginseng-derived compounds in cancer. Journal of Ginseng Research 2018;42:248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  21. Lee CH, Kim J-H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. Journal of Ginseng Research 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  22. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. Journal of Ginseng Research 2018;42:264-9.
  23. Lee S, Rhee D-K. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. Journal of Ginseng Research 2017;41:589-94. https://doi.org/10.1016/j.jgr.2017.01.010
  24. Hou W, Wang Y, Zheng P, Cui R. Effects of ginseng on neurological disorders. Frontiers in Cellular Neuroscience 2020;14:55.
  25. Cho I-H. Effects of Panax ginseng in neurodegenerative diseases. Journal of Ginseng Research 2012;36:342.
  26. Jin T-Y, Rong P-Q, Liang H-Y, Zhang P-P, Zheng G-Q, Lin Y. Clinical and preclinical systematic review of panax ginseng CA mey and its compounds for fatigue. Frontiers in Pharmacology 2020;11:1031.
  27. Oh K-J, Chae M-J, Lee H-S, Hong H-D, Park K. Effects of Korean red ginseng on sexual arousal in menopausal women: placebo-controlled, double-blind crossover clinical study. The Journal of Sexual Medicine 2010;7:1469-77. https://doi.org/10.1111/j.1743-6109.2009.01700.x
  28. Wang C, Liu J, Deng J, Wang J, Weng W, Chu H, Meng Q. Advances in the chemistry, pharmacological diversity, and metabolism of 20 (R)-ginseng saponins. Journal of Ginseng Research 2020;44:14-23. https://doi.org/10.1016/j.jgr.2019.01.005
  29. Jung E-M, Lee G-S. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 2022;46:331-6. https://doi.org/10.1016/j.jgr.2022.02.003
  30. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009;30:293-342. https://doi.org/10.1210/er.2009-0002
  31. Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, et al. Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: highlights from a national Italian meeting. International Journal of Molecular Sciences 2018;19.
  32. Lisco G, Giagulli VA, Iovino M, Guastamacchia E, Pergola G, Triggiani V. Endocrine-disrupting chemicals: introduction to the theme. Endocr Metab Immune Disord - Drug Targets 2022;22:677-85. https://doi.org/10.2174/1871530321666210413124425
  33. Monneret C. What is an endocrine disruptor? C R Biol 2017;340:403-5. https://doi.org/10.1016/j.crvi.2017.07.004
  34. Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol (Lausanne) 2019;10:178.
  35. Encarnacao T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: impact on human health, wildlife and the environment. Sci Prog 2019;102:3-42. https://doi.org/10.1177/0036850419826802
  36. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 2017;13:161-73. https://doi.org/10.1038/nrendo.2016.186
  37. Predieri B, Bruzzi P, Bigi E, Ciancia S, Madeo SF, Lucaccioni L, Iughetti L. Endocrine disrupting chemicals and type 1 diabetes. Int J Mol Sci 2020:21.
  38. Streifer M, Gore AC. Epigenetics, estrogenic endocrine-disrupting chemicals (EDCs), and the brain. Adv Pharmacol 2021;92:73-99. https://doi.org/10.1016/bs.apha.2021.03.006
  39. Combarnous Y, Nguyen TMD. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics 2019;7.
  40. La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020;16:45-57. https://doi.org/10.1038/s41574-019-0273-8
  41. Tan H, Chen Q, Hong H, Benfenati E, Gini GC, Zhang X, Yu H, Shi W. Structures of endocrine-disrupting chemicals correlate with the activation of 12 classic nuclear receptors. Environ Sci Technol 2021;55:16552-62. https://doi.org/10.1021/acs.est.1c04997
  42. Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Front Public Health 2020;8:553850.
  43. Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Borgert CJ, Dekant W, Dietrich D, Domingo JL, et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Toxicol In Vitro 2020;67:104861.
  44. Koong LY, Watson CS. Direct estradiol and diethylstilbestrol actions on early-versus late-stage prostate cancer cells. Prostate 2014;74:1589-603. https://doi.org/10.1002/pros.22875
  45. Park C, Lee J, Kong B, Park J, Song H, Choi K, Guon T, Lee Y. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environ Pollut 2019;248:774-81. https://doi.org/10.1016/j.envpol.2019.02.069
  46. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 2011;24:6-19. https://doi.org/10.1021/tx100231n
  47. Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 2003;75:40-6. https://doi.org/10.1093/toxsci/kfg150
  48. Tan H, Wang X, Hong H, Benfenati E, Giesy JP, Gini GC, et al. Correction to structures of endocrine-disrupting chemicals determine binding to and activation of the estrogen receptor alpha and androgen receptor. Environ Sci Technol 2022;56:3299.
  49. Skakkebaek NE, Toppari J, Soder O, Gordon CM, Divall S, Draznin M. The exposure of fetuses and children to endocrine disrupting chemicals: a European Society for Paediatric Endocrinology (ESPE) and Pediatric Endocrine Society (PES) call to action statement. J Clin Endocrinol Metab 2011;96:3056-8. https://doi.org/10.1210/jc.2011-1269
  50. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  51. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021;45:199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  52. Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in Endocrine and Metabolic Disorders 2020;21:127-47. https://doi.org/10.1007/s11154-019-09521-z
  53. Gao H, Yang BJ, Li N, Feng LM, Shi XY, Zhao WH, Liu SJ. Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine (Baltimore) 2015;94:e211.
  54. Salamanca-Fernandez E, Rodriguez-Barranco M, Amiano P, Delfrade J, Chirlaque MD, Colorado S, Guevara M, Jimenez A, Arrebola JP, Vela F, et al. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health 2021;20:88.
  55. Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021:45.
  56. Kabasenche WP, Skinner MK. DDT, epigenetic harm, and transgenerational environmental justice. Environ Health 2014;13:62.
  57. Enayah SH, Vanle BC, Fuortes LJ, Doorn JA, Ludewig G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 2018;394:93-101. https://doi.org/10.1016/j.tox.2017.12.003
  58. Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021;4:1129.
  59. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs Jr DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012;33:378-455. https://doi.org/10.1210/er.2011-1050
  60. Shoaff JR, Coull B, Weuve J, Bellinger DC, Calafat AM, Schantz SL, Korrick SA. Association of exposure to endocrine-disrupting chemicals during adolescence with attention-deficit/hyperactivity disorder-related behaviors. JAMA Netw Open 2020;3:e2015041.
  61. Rowland AS, Lesesne CA, Abramowitz AJ. The epidemiology of attention-deficit/hyperactivity disorder (ADHD): a public health view. Ment Retard Dev Disabil Res Rev 2002;8:162-70. https://doi.org/10.1002/mrdd.10036
  62. Hatcher-Martin JM, Gearing M, Steenland K, Levey AI, Miller GW, Pennell KD. Association between polychlorinated biphenyls and Parkinson's disease neuropathology. Neurotoxicology 2012;33:1298-304. https://doi.org/10.1016/j.neuro.2012.08.002
  63. Kajta M, Wojtowicz AK. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 2013;65:1632-9. https://doi.org/10.1016/S1734-1140(13)71524-X
  64. Tang ZR, Xu XL, Deng SL, Lian ZX, Yu K. Oestrogenic endocrine disruptors in the placenta and the fetus. Int J Mol Sci 2020:21.
  65. Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 2007;3:249-59. https://doi.org/10.1038/ncpendmet0424
  66. Ruiz D, Becerra M, Jagai JS, Ard K, Sargis RM. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 2018;41:193-205. https://doi.org/10.2337/dc16-2765
  67. Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health 2021;18.
  68. van der Meer TP, Thio CHL, van Faassen M, van Beek AP, Snieder H, van Berkum FNR, Kema IP, Makris KC, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. Endocrine disrupting chemicals during diet-induced weight loss - a post-hoc analysis of the LOWER study. Environ Res 2021;192:110262.
  69. Yang M, Lee HS, Hwang MW, Jin M. Effects of Korean red ginseng (Panax Ginseng Meyer) on bisphenol A exposure and gynecologic complaints: single blind, randomized clinical trial of efficacy and safety. BMC Complement Altern Med 2014;14:265.
  70. Park J, Choi K, Lee J, Jung JM, Lee Y. The effect of Korean red ginseng on bisphenol A-induced fatty acid composition and lipid metabolism-related gene expression changes. Am J Chin Med 2020;48:1841-58. https://doi.org/10.1142/S0192415X20500925
  71. Song H, Lee YY, Park J, Lee Y. Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species. J Ginseng Res 2021;45:119-25. https://doi.org/10.1016/j.jgr.2020.01.002
  72. Waits A, Chang CH, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen HC, Chen YS, Hwang B, et al. Exposome of attention deficit hyperactivity disorder in Taiwanese children: exploring risks of endocrine-disrupting chemicals. J Expo Sci Environ Epidemiol 2022;32:169-76. https://doi.org/10.1038/s41370-021-00370-0
  73. Laws MJ, Neff AM, Brehm E, Warner GR, Flaws JA. Endocrine disrupting chemicals and reproductive disorders in women, men, and animal models. Adv Pharmacol 2021;92:151-90. https://doi.org/10.1016/bs.apha.2021.03.008
  74. Sharma A, Mollier J, Brocklesby RWK, Caves C, Jayasena CN, Minhas S. Endocrine-disrupting chemicals and male reproductive health. Reprod Med Biol 2020;19:243-53. https://doi.org/10.1002/rmb2.12326
  75. Rodprasert W, Toppari J, Virtanen HE. Endocrine disrupting chemicals and reproductive health in boys and men. Front Endocrinol (Lausanne) 2021;12:706532.
  76. Cho YJ, Yun JH, Kim SJ, Kwon HY. Nonpersistent endocrine disrupting chemicals and reproductive health of women. Obstet Gynecol Sci 2020;63:1-12. https://doi.org/10.5468/ogs.2020.63.1.1
  77. Reed CE, Fenton SE. Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects. Birth Defects Res C Embryo Today 2013;99:134-46. https://doi.org/10.1002/bdrc.21035
  78. Hilakivi-Clarke L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res 2014;16:208.
  79. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010;1:146-55. https://doi.org/10.1007/s12672-010-0015-9
  80. Saadeldin IM, Hussein MA, Suleiman AH, Abohassan MG, Ahmed MM, Moustafa AA, Moumen AF, Abdel-Aziz Swelum A. Ameliorative effect of ginseng extract on phthalate and bisphenol A reprotoxicity during pregnancy in rats. Environ Sci Pollut Res Int 2018;25:21205-15. https://doi.org/10.1007/s11356-018-2299-1