DOI QR코드

DOI QR Code

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen, Qi (Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences) ;
  • Zhipeng, Yan (First Teaching Hospital of Tianjin University of Traditional Chinese Medicine) ;
  • Yueyao, Wang (First Teaching Hospital of Tianjin University of Traditional Chinese Medicine) ;
  • Nan, Ji (Tianjin University of Traditional Chinese Medicine) ;
  • Xiaoya, Yang (Tianjin University of Traditional Chinese Medicine) ;
  • Ao, Zhang (First Teaching Hospital of Tianjin University of Traditional Chinese Medicine) ;
  • Meng, Li (Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Fengqin, Xu (Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences) ;
  • Junping, Zhang (First Teaching Hospital of Tianjin University of Traditional Chinese Medicine)
  • Received : 2021.12.28
  • Accepted : 2023.03.17
  • Published : 2023.03.02

Abstract

Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 81804046, 81,774,232).

References

  1. Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, Liu R, Li Z. A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in componentbased Chinese medicine. Comput Biol Chem 2021;90:107402. 
  2. Tsai FJ, Li TM, Cheng CF, Wu YC, Lai CH, Ho TJ, Liu X, Tsang H, Lin TH, Liao CC, et al. Effects of Chinese herbal medicine on hyperlipidemia and the risk of cardiovascular disease in HIV-infected patients in Taiwan. J Ethnopharmacol 2018;219:71-80.  https://doi.org/10.1016/j.jep.2018.03.006
  3. De Las Rivas J, Bonavides-Martinez C, Campos-Laborie FJ. Bioinformatics in Latin America and SoIBio impact, a tale of spin-off and expansion around genomes and protein structures. Briefings Bioinf 2019;20:390-7.  https://doi.org/10.1093/bib/bbx064
  4. Pradeepkiran JA, Reddy PH. Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer's disease. Cells 2019;8. 
  5. Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets 2019;20:501-21.  https://doi.org/10.2174/1389450119666181022153016
  6. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol 2008;443:365-82.  https://doi.org/10.1007/978-1-59745-177-2_19
  7. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3:935-49.  https://doi.org/10.1038/nrd1549
  8. Kumar A, Tiwari A, Sharma A. Changing paradigm from one target one ligand towards multi-target directed ligand design for key drug targets of Alzheimer disease: an important role of in silico methods in multi-target directed ligands design. Curr Neuropharmacol 2018;16:726-39.  https://doi.org/10.2174/1570159X16666180315141643
  9. Chen L, Du J, Dai Q, Zhang H, Pang W, Hu J. Prediction of anti-tumor chemical probes of a traditional Chinese medicine formula by HPLC fingerprinting combined with molecular docking. Eur J Med Chem 2014;83:294-306.  https://doi.org/10.1016/j.ejmech.2014.06.037
  10. Hopkins AL. Network pharmacology. Nat Biotechnol 2007;25:1110-1.  https://doi.org/10.1038/nbt1007-1110
  11. Shin SY, Muller AK, Verma N, Lev S, Nguyen LK. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer. PLoS Comput Biol 2018;14:e1006192. 
  12. Li M, Qi Z, Zhang J, Zhu K, Wang Y. Effect and mechanism of Si-Miao-Yong-An on Vasa Vasorum remodeling in ApoE(-/-) mice with atherosclerosis vulnerable plague. Front Pharmacol 2021;12:634611. 
  13. Qi Z, Li M, Zhu K, Zhang J. Si-Miao-Yong-An on promoting the maturation of Vasa Vasorum and stabilizing atherosclerotic plaque in ApoE(-/-) mice: an experimental study. Biomed Pharmacother 2019;114:108785. 
  14. Zhang Y, Shi P, Yao H, Shao Q, Fan X. Metabolite profiling and pharmacokinetics of herbal compounds following oral administration of a cardiovascular multi-herb medicine (Qishen yiqi pills) in rats. Curr Drug Metabol 2012;13:510-23.  https://doi.org/10.2174/1389200211209050510
  15. Huang Y, Zhang K, Liu M, Su J, Qin X, Wang X, Zhang J, Li S, Fan G. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine 2021;91:153633. 
  16. Hou YZ, Wang S, Zhao ZQ, Wang XL, Li B, Soh SB, Mao JY. Clinical assessment of complementary treatment with Qishen Yiqi dripping pills on ischemic heart failure: study protocol for a randomized, double-blind, multicenter, placebo-controlled trial (CACT-IHF). Trials 2013;14:138. 
  17. Lv S, Yuan P, Dong J, Lu C, Li M, Qu F, Zhu Y, Yuan Z, Zhang J. QiShenYiQi pill improves the reparative myocardial fibrosis by regulating autophagy. J Cell Mol Med 2020;24:11283-93.  https://doi.org/10.1111/jcmm.15695
  18. An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang X, Li X, Shang H, et al. Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Front Immunol 2019;10:1592. 
  19. Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021;236:5547-63.  https://doi.org/10.1002/jcp.30285
  20. Lv S, Yuan P, Lu C, Dong J, Li M, Qu F, Zhu Y, Zhang J. QiShenYiQi pill activates autophagy to attenuate reactive myocardial fibrosis via the PI3K/AKT/mTOR pathway. Aging 2021;13:5525-38.  https://doi.org/10.18632/aging.202482
  21. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf 2014;6:13. 
  22. Su X, Kong L, Lei X, Hu L, Ye M, Zou H. Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini Rev Med Chem 2007;7:87-98.  https://doi.org/10.2174/138955707779317830
  23. Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013;145:1-10.  https://doi.org/10.1016/j.jep.2012.09.051
  24. Breuza L, Poux S, Estreicher A, Famiglietti ML, Magrane M, Tognolli M, Bridge A, Baratin D, Redaschi N. The UniProtKB guide to the human proteome, vol. 2016. Oxford: Database; 2016. 
  25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.  https://doi.org/10.1101/gr.1239303
  26. Paolacci S, Precone V, Acquaviva F, Chiurazzi P, Fulcheri E, Pinelli M, Buffelli F, Michelini S, Herbst KL, Unfer V, et al. Genetics of lipedema: new perspectives on genetic research and molecular diagnoses. Eur Rev Med Pharmacol Sci 2019;23:5581-94. 
  27. Taha KF, Khalil M, Abubakr MS, Shawky E. Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies. J Ethnopharmacol 2020;249:112413. 
  28. Daga PR, Polgar WE, Zaveri NT. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification. J Chem Inf Model 2014;54:2732-43.  https://doi.org/10.1021/ci500291a
  29. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-61.  https://doi.org/10.1002/jcc.21334
  30. Gaillard T. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark. J Chem Inf Model 2018;58:1697-706.  https://doi.org/10.1021/acs.jcim.8b00312
  31. Yadav BS, Tripathi V. Recent advances in the system biology-based target identification and drug discovery. Curr Top Med Chem 2018;18:1737-44.  https://doi.org/10.2174/1568026618666181025112344
  32. Kibble M, Saarinen N, Tang J, Wennerberg K, Makel a S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 2015;32:1249-66.  https://doi.org/10.1039/C5NP00005J
  33. Ni KL, Han LF, Zhao N, He TT, Chai JH. A new dammarane-tye triterpenoid saponin from roots of Panax notoginseng. Chin Tradit Herb Drugs 2019;50:2273-8. 
  34. Huang JW, Li CJ, Yang JZ, Ma J, Zang DM. Chemical constituents from leaves of Panax notoginseng and anti-oxidant activity. Chin Tradit Herb Drugs 2017;48:4381-6. 
  35. Xing N, Peng DH, Zhang ZH, Zhang ZD, Kuan HX, Wang QH. Progress in Research on Effect of Processing on Chemical Constituents and Pharmacological Effect of Notoginseng Radix et Rhizoma. Chin J Exp Tradit Med Form 2020;26:210-27. 
  36. Li GM, Li Y. Research status of pharmacological effects of ginsenosides. Chin J Clin Pharmacol 2020;36:1024-7. 
  37. Qu M, Wang N, Dong ZH. Effects of ginsenoside Rh2 on myocardial oxidative stress in diabetic rats. J Beihua Univ Nat Sci 2015;16:741-7. 
  38. Nong J, Zeng P, Li J, Liu JF, Li JY. Immunoinflammatory mechanism of Panax notoginseng in the treatment of osteonecrosis of the femoral head based on network pharmacology. Chin J Tissue Eng Res 2020;24:4613-9. 
  39. Wu YX, Wu LP, Hu CY, Wan ZB, Li KB, Kim TW. Effect of sanggenon B from cortex mori on lipopolysaccharide-induced inflammatory response in RAW264. Nat Prod Res Dev 2018;30:1132-7. 
  40. Zhang XP, Li KR, Yu Q, Yao MD, Ge HM, Li XM, Jiang Q, Yao J, Cao C. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization. Faseb J 2018;32:3782-91.  https://doi.org/10.1096/fj.201701074rr
  41. Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 2019;670:4-14.  https://doi.org/10.1016/j.abb.2019.02.008
  42. Cao H, Liang J, Liu J, He Y, Ke Y, Sun Y, Jiang S, Lin J. Novel effects of combination therapy through inhibition of caspase-1/gasdermin D induced-pyroptosis in lupus nephritis. Front Immunol 2021;12:720877. 
  43. Chen S, Mei S, Luo Y, Wu H, Zhang J, Zhu J. Gasdermin family: a promising therapeutic target for stroke. Transl Stroke Res 2018;9:555-63.  https://doi.org/10.1007/s12975-018-0666-3
  44. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013;93:865-73.  https://doi.org/10.1189/jlb.1212662
  45. Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacol Res 2016;111:534-44.  https://doi.org/10.1016/j.phrs.2016.06.031
  46. Jessop F, Holian A. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicology 2015;9:365-72.  https://doi.org/10.3109/17435390.2014.933904
  47. Xiao Y, Ding L, Yin S, Huang Z, Zhang L, Mei W, Wu P, Wang P, Pan K. Relationship between the pyroptosis of fibroblast-like synoviocytes and HMGB1 secretion in knee osteoarthritis. Mol Med Rep 2021;23. 
  48. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 2015;12:137.