DOI QR코드

DOI QR Code

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun, Yang (Bio-Chemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute) ;
  • Soo-Bin, Nam (Research Center for Materials Analysis, Korea Basic Science Institute) ;
  • Minsu, Jang (Division of Biological Science and Technology, Yonsei University) ;
  • Junsoo, Park (Division of Biological Science and Technology, Yonsei University) ;
  • Ga-Eun, Lee (BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea) ;
  • Yong-Yeon, Cho (BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea) ;
  • Byeong-Churl, Jang (Department of Molecular Medicine, College of Medicine, Keimyung University) ;
  • Cheol-Jung, Lee (Research Center for Materials Analysis, Korea Basic Science Institute) ;
  • Jong-Soon, Choi (Research Center for Materials Analysis, Korea Basic Science Institute)
  • Received : 2022.06.09
  • Accepted : 2022.11.03
  • Published : 2023.03.02

Abstract

Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Keywords

Acknowledgement

This research was supported by Korea Basic Science Institute grants (C280320 and C230110) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1F1A1057701).

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-217. https://doi.org/10.1016/j.cell.2013.05.039
  2. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961;25:585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  3. Wang AS, Dreesen O. Biomarkers of cellular senescence and skin aging. Front Genet 2018;9:247.
  4. Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy 2013;9:808-12. https://doi.org/10.4161/auto.23922
  5. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J. Autophagy maintains stemness by preventing senescence. Nature 2016;529:37-42. https://doi.org/10.1038/nature16187
  6. Chun Y, Kim J. Autophagy: an essential degradation Program for cellular homeostasis and life. Cells 2018;7.
  7. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004;36:2503-18. https://doi.org/10.1016/j.biocel.2004.05.009
  8. Hollenstein DM, Kraft C. Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol 2020;65:50-7. https://doi.org/10.1016/j.ceb.2020.02.012
  9. Sakata T, Saito A, Sugimoto H. In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing. Sci Rep 2018;8:8282.
  10. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010;1:e10.
  11. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 2013;4:2300.
  12. Fu M, Liang X, Zhang X, Yang M, Ye Q. Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutr Neurosci 2022:1-11.
  13. Tan YZ, Xu XY, Dai JM, Yin Y, He XT. Melatonin induces the rejuvenation of long-term ex vivo expanded periodontal ligament stem cells by modulating the autophagic process. Stem Cell Res Ther 2021;12:254.
  14. Park SM, Kim K, Lee EJ, Kim BK, Lee TJ. Reduced expression of DRAM2/TMEM77 in tumor cells interferes with cell death. Biochem Biophys Res Commun 2009;390:1340-4. https://doi.org/10.1016/j.bbrc.2009.10.149
  15. Wudu M, Ren H, Hui L, Jiang J, Zhang S. DRAM2 acts as an oncogene in non-small cell lung cancer and suppresses the expression of p53. J Exp Clin Cancer Res 2019;38:72.
  16. Yoon JH, Her S, Kim M, Jang IS, Park J. The expression of damage-regulated autophagy modulator 2 (DRAM2) contributes to autophagy induction. Mol Biol Rep 2012;39:1087-93. https://doi.org/10.1007/s11033-011-0835-x
  17. Kim JK, Lee HM, Park KS, Shin DM, Kim TS. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy 2017;13:423-41. https://doi.org/10.1080/15548627.2016.1241922
  18. Bai S, Tian B, Li A, Yao Q, Zhang G, Li F. MicroRNA-125b promotes tumor growth and suppresses apoptosis by targeting DRAM2 in retinoblastoma. Eye (Lond) 2016;30:1630-8. https://doi.org/10.1038/eye.2016.189
  19. Li H, Lu C, Yao W, Xu L, Zhou J, Zheng B. Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury. Aging (Albany NY) 2020;12:21687-705. https://doi.org/10.18632/aging.103975
  20. Park SK, Hyun SH, In G, Park CK, Kwak YS. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. J Ginseng Res 2021;45:41-7. https://doi.org/10.1016/j.jgr.2020.09.006
  21. Han SY, Kim J, Kim E, Kim SH, Seo DB. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2018;42:496-503. https://doi.org/10.1016/j.jgr.2017.06.003
  22. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 2000;11:565-76.
  23. Peng X, Hao M, Zhao Y, Cai Y, Chen X. Red ginseng has stronger anti-aging effects compared to ginseng possibly due to its regulation of oxidative stress and the gut microbiota. Phytomedicine 2021;93:153772.
  24. Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J. Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chinese Medicine 2012;7:2.
  25. Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull (Tokyo) 2003;51:1314-7. https://doi.org/10.1248/cpb.51.1314
  26. Dai S, Hong Y, Xu J, Lin Y, Si Q, Gu X. Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. Biomed Pharmacother 2018;100:93-100. https://doi.org/10.1016/j.biopha.2018.01.111
  27. Wang S, Yang S, Chen Y, Chen Y, Li R. Ginsenoside Rb2 alleviated atherosclerosis by inhibiting M1 macrophages polarization induced by MicroRNA-216a. Front Pharmacol 2021;12:764130.
  28. Kim DH, Kim DW, Jung BH, Lee JH, Lee H. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2019;43:326-34. https://doi.org/10.1016/j.jgr.2018.12.002
  29. Chen Y, Wang S, Yang S, Li R, Yang Y. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA-216a. Mol Med Rep 2021;23.
  30. Jang IS, Jo E, Park SJ, Baek SJ, Hwang IH. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxins. J Ginseng Res 2020;44:50-7. https://doi.org/10.1016/j.jgr.2018.07.008
  31. Yang KE, Jang HJ, Hwang IH, Hong EM, Lee MG. Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. J Ginseng Res 2020;44:341-9. https://doi.org/10.1016/j.jgr.2019.08.002
  32. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ 2022;29(5):946-60. https://doi.org/10.1038/s41418-022-00988-z
  33. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG. p62 links the autophagy pathway and the ubiquitin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 2016;21:29.
  34. Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci 2017;18.
  35. Lu T, Zhu Z, Wu J, She H, Han R. DRAM1 regulates autophagy and cell proliferation via inhibition of the phosphoinositide 3-kinase-Akt-mTOR-ribosomal protein S6 pathway. Cell Commun Signal 2019;17:28.
  36. O'Prey J, Skommer J, Wilkinson S, Ryan KM. Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy. Cell Cycle 2009;8:2260-5. https://doi.org/10.4161/cc.8.14.9050
  37. Chung KS, Cho SH, Shin JS, Kim DH, Choi JH. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-β expression. Carcinogenesis 2013;34:331-40. https://doi.org/10.1093/carcin/bgs341
  38. Yu S, Xia H, Guo Y, Qian X, Zou X. Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice. J Ethnopharmacol 2020;255:112746.
  39. Gelino S, Hansen M. Autophagy - an emerging anti-aging mechanism. J Clin Exp Pathol 2012;Suppl 4.
  40. Huang Q, Wang T, Yang L, Wang HY. Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int J Mol Sci 2017;18.
  41. Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013;9:124-37. https://doi.org/10.4161/auto.23323
  42. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284:12297-305. https://doi.org/10.1074/jbc.M900573200
  43. Mack HI, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012;8:1197-214. https://doi.org/10.4161/auto.20586
  44. El-Asrag ME, Sergouniotis PI, McKibbin M, Plagnol V, Sheridan E. Biallelic mutations in the autophagy regulator DRAM2 cause retinal dystrophy with early macular involvement. Am J Hum Genet 2015;96:948-54. https://doi.org/10.1016/j.ajhg.2015.04.006