# Inhibitory Effect of *Dendrobium moniliforme* on Degranulation and Histidine Decarboxylase Expression in RBL-2H3 Cells

Young Ji Lee<sup>\*</sup>, Iskander Madhi<sup>\*</sup> and YoungHee Kim<sup>\*</sup>

Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea

Received January 12, 2023 / Revised January 27, 2023 / Accepted January 28, 2023

The stems of *Dendrobium moniliforme* are used in traditional Oriental medicine as a Yin tonic to nourish the stomach, promote the production of body fluid, and reduce fever. This study investigated the effects of the aqueous extract of *D. moniliforme* stems (DME) on mast cell degranulation and the expression of tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ), interleukin-4 (IL-4), and histamine-synthesizing enzyme histidine decarboxylase (HDC). We used rat mast cell line RBL-2H3 cells and stimulated them with PMA plus calcium ionophore (PMACI). Pretreatment with DME significantly inhibited PMACI-induced  $\beta$ -hexosaminidase release and the expression of TNF- $\alpha$ , IL-4, and HDC. Furthermore, DME suppressed PMACI-induced nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF- $\kappa$ B) and activator protein 1 (AP-1). In addition, HDC expression was inhibited by SP600125 (JNK inhibitor), PD98059 (ERK inhibitor), and SB203580 (p38 kinase inhibitor). Finally, the phosphorylation of p38 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) was inhibited by pretreatment with DME. These results suggest that DME has inhibitory effects against degranulation, cytokine (TNF- $\alpha$  and IL-4) and HDC expression, and that HDC expression is mediated by MAPK signaling. These findings suggest that DME may have therapeutic potential in the treatment of hypersensitive and inflammatory diseases.

# Key words: Degranulation, Dendrobium moniliforme, histidine decarboxylase, mast cell, mitogen activated protein kinase

#### 서 론

비만세포(mast cell)는 제 1형 과민반응(알러지 반응)을 유발하는 대표적인 세포로 알려져 있다. 비만세포의 세포 막에는 면역글로불린 E (IgE)에 대한 수용체가 존재하는 데, 이 수용체에 IgE가 결합한 후 수용체에 결합한 IgE에 항원이 결합하면 비만세포가 활성화되어 세포내로 신호 전달 과정이 일어난다[5, 7]. 신호전달 과정의 대표적인 예로 세포내 유리 칼슘이 증가하게 되고 이로 인해 세포 질에 있는 과립(그래뉼)이 세포막과 융합하여 그래뉼내 물질을 분비하는 탈과립화(degranulation)가 일어난다. 이 탈과립화에 의해 히스타민, 사이토카인, 케모카인, 프로 테아제, 프로스타글란딘, 류코트리엔 등의 염증 매개 물 질이 분비되고, 알러지 반응이 촉발되거나 심화된다[5, 7]. 히스타민은 수용성 아민으로서 히스티딘 탈탄산효소 [histidine decarboxylase (HDC)]에 의해 아미노산인 L-히스 티딘으로부터 만들어진다. 히스타민은 혈관을 이완시키 고, 혈관투과성을 증가시키며, 기관지를 수축시키고, 점 액 분비를 촉진하는 등의 알러지 반응을 유발한다. 또한 위에서 위액의 분비를 촉진하며, 중추신경계에서 신경조 절물질의 분비를 조절하고, 호염기구, 단핵구세포 등에 작용하여 천식, 장염, 피부염, 관절염 등의 염증반응을 촉 진하기도 한다[20].

석곡(Dendrobium moniliforme)의 줄기는 동양의학에서 예로부터 위를 보하고, 진액을 보충하며, 해열, 진통 작용 과 혈압을 내리는 작용을 하며, 소화 촉진, 변비 치료 등에 사용되어 왔다[1]. 석곡은 alkaloids, sesquiterpens, phenanthrens와 같은 이차 대사산물을 함유하고 있는 것으로 알려져 있다[4, 18, 23, 28, 29]. 석곡은 대식세포의 탐식 기능을 향상시키며, 염증반응을 억제하는 것으로 보고되 었다[1, 17]. 그러나 알러지 반응이나 비만세포 활성화에 대한 효과는 잘 알려지지 않았다. 따라서 본 연구에서는 석곡이 비만세포의 활성화에 어떠한 영향을 미치는지 알 아보고 그 조절 기전을 밝히고자 한다.

<sup>&</sup>lt;sup>†</sup>Authors contributed equqlly. \*Corresponding author Tel: +82-51-510-2526, Fax: +82-51-513-9258

E-mail: yheekim@pusan.ac.kr

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

# 재료 및 방법

#### 석곡 추출액(DME) 준비

마른 석곡은 광명당(광주)으로부터 구입하였다. 석곡 (300 g)을 증류수에 넣고 100℃에서 4시간 동안 끓이고 식힌 후 0.45 μm 필터로 거르고 동결건조 하여 8 g을 얻어 냉장보관 하였다. 동결건조된 석곡 가루를 PBS (phosphate buffered saline)에서 녹이고 0.22 μm 필터로 걸러 사용하였 다.

#### 세포배양

쥐(Rat) 비만세포주(RBL-2H3) 세포는 Dulbecco's modified Eagle's medium (DMEM)에 10% FBS를 첨가한 배양액 에서 37℃, 5% CO<sub>2</sub> 환경에서 배양하였다.

#### 세포 생존도 측정

DME의 세포독성 효과를 microculture tetrazolium (MTT)based colorimetric assay방법으로 분석하였다. 2×10<sup>5</sup> 세포 를 24-well plate에 배양한 후 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT, Sigma Chemical Co. (St. Louis, MO)] 용액(최종 농도 62.5 µg/ml)을 넣고 37℃, 5% CO<sub>2</sub> 환경에서 3시간 배양한다. 상층액을 버리고 세포 에 남아있는 formazan 결정을 150 µl의 DMSO로 녹인 후 570 nm에서 흡광도를 측정하였다.

### β-Hexosaminidase 분비 측정

비만세포의 탈과립화를 측정하기 위해 비만세포의 그 래뉼에 존재하는 β-Hexosaminidase 의 분비를 측정하였 다. 2.5×10<sup>4</sup> 세포를 96-well plate에 넣어 DME를 첨가하고 1시간 배양하였다. 50 nM PMA와 1 mM A23187을 첨가하 고 1시간 더 배양한 후 세포배양 상층액을 덜어내고 남은 세포에 0.5% Triton X-100 용액을 넣어 세포를 용해하였 다. 세포배양 상층액과 세포용해액 각 10 μ를 96-well plate 에 따로 넣어 5 mM p-nitrophenyl-N-acetyl-β-D-glucosamine (0.1 M sodium citrate buffer, pH 4.5 용액에 녹임) 용액 10 μ를 첨가하고 37℃에서 40분간 배양하였다. 0.2 M Glycine, pH 10.7 용액 150 μl를 첨가하여 반응을 정지시키고 405 nm에서 홉광도를 측정하였다. Hexosaminidase 의 분비는 아래 식으로 계산하였다.

세포배양상층액 흡광도 / (세포배양상층액 흡광도 + 세포용해액 흡광도)×100(%)

#### RT-PCR

세포의 전체RNA를 RNA-spin mini RNA isolation kits (GE Healthcare, USA)로 분리한 후 oligo-dT15-primers를 이용하여 Maxime RT PreMix (Intron Biotechnology, Korea) 로 cDNA로 역전사시켰다. 다음의 primer를 이용하여 TaKaRa PCR Thermal Cycler Dice (TaKaRa Bio Inc., Japan) 기계로 PCR을 한 후 agarose 젤에 전기영동을 하였다. TNF-α-forward (5'-TTCTCATTCCTGCTTGTGGC-3'), TNFα-reverse (5'-GTTTGCTACGACGTGGGCTA-3'), IL-4-forward (5'-ACGAGGTCACAGGAGAAGGG-3'), IL-4-reverse (5'-AAGCCCGAAAGAGTCTCTGC-3'), GAPDH-forward (5'-AGGTGGTCTCCTCTGACTTC-3'), GAPDH-reverse (5'-TACCAGGAAATGAGCTTGAC-3')

#### 단백질 추출 및 Western blot 분석

세포질의 단백질은 세포용해버퍼(1% Triton X-100, 1% deoxycholate, PBS)를 이용하여 추출하였다. 세포핵 단백 질은 이전에 설명된 방법으로 추출하였다[2]. 세포를 PBS 용액으로 3번 씻은 후 저장액(10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol, 0.2 mM PMSF)에 4℃에서 15분간 배양하였다. NP-40 (0.1%)을 첨 가하고 4℃에서 1분간 배양한 후 1,700 g에서 1분간 원심 분리하여 상층액을 제거하였다. 침전물에 고장액(20 mM HEPES-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl<sub>2</sub>, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM PMSF)을 넣고 4℃에서 30분간 가끔 흔들어 주면서 배양 하였다. 1,700 g에서 5분간 원심분리하여 세포핵 단백질 이 있는 상층액을 -70℃에 보관하였다. 동일량의 단백질 을 10% polyacrylamide 젤에서 전기영동 [SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis)] 하고 0.45 μm nitrocellulose membrane으로 이동시켰다. Membrane을 α-HDC 항체(Eurodiagnostica, Sweden), α -tubulin, α-p65, α- c-Fos, α-c-Jun, α-HDAC3, anti-JNK, α -p38, α-ERK1/2 항체(Santa Cruz Biotechnology, CA, USA), α-phospho-JNK, α- phospho-p38, α-phospho-ERK1/2 antibody 항체(Cell Signaling Technology, USA)와 각각에 대한 이차 항체로 배양하고 enhanced chemiluminescence detection system (Amersham Co., USA)으로 검출하였다.

# 면역형광 공초점현미경 관찰(immunofluorescence confocal microscopy)

세포를 cover-slip에 키운 후 -20℃ 메탄올로 10분간 고 정하고 1:100으로 희석한 항체를 16시간 처리하였다. PBS 로 씻은 후 fluorescein isothiocyanate (FITC)가 달려있는 2차 항체를 상온에서 4시간 처리하였다. 세포핵을 1 mg/ ml 4',6-diamidino-2-phenylindole (DAPI)로 염색하고 LSM 510 Meta 공초점현미경[confocal microscope (Zeiss, Jena, Germany)]으로 관찰하였다.

#### 통계 분석

모든 결과는 평균 ± 표준오차로 나타내었고, 각 실험은

세 번 이상 반복하였다. 통계 처리를 위해 Prism 7 소프트 웨어(GraphPad Software, inc., USA)를 이용하여 one-way analysis of variance (ANOVA) 분석을 하였고, 각 그룹을 비교하기 위해 Tukey's post hoc test을 사용하였다. *p*<0.05 인 경우 통계적으로 유의하다고 표시하였다.

#### 결과 및 고찰

#### 비만세포 탈과립작용에 대한 DME의 효과

DME의 작용을 관찰하기에 앞서 DME가 세포독성이 있는지를 MTT assay 방법으로 조사하였다. 쥐 비만세포 주인 RBL-2H3 세포에 DME를 처리했을 때 DME의 농도 에 무관하게 MTT 수준에 변화가 없었다(Fig. 1A). 따라서 1,000 mg/ml 농도 범위에서는 DME가 세포독성을 나타내 지 않음을 알 수 있었으며, 이후 실험에 DME를 1,000 mg/ ml 농도까지 사용하였다.



Fig. 1. Effect of DME on mast cell degranulation. (A) Effect of DME on cell viability. RBL-2H3 cells were incubated with various concentration of DME for 24 hr. Then cell viability was measured by MTT assay. (B) Effect of DME on degranulation. RBL-2H3 cells were incubated with various concentration of DME for 1 hr and then treated with 50 nM PMA and 1 mM A23187 for 1 hr. Degranulation was measured by  $\beta$ hexosaminidase release. \*p<0.05 vs PMA plus A23187treated group. IgE/항원 뿐 만 아니라 PMA와 Ca ionophore (A23187) 병행 처리[PMA plus Calcium ionophore (PMACI)]가 비만 세포를 자극하여 신호전달 경로를 활성화시키는 것으로 알려져 있고, PMACI를 이용하여 비만세포를 활성화시키 는 연구가 많이 발표되고 있다[5, 10]. 따라서 본 연구에서 는 PMACI를 처리하여 RBL-2H3 세포를 활성화시켰으며, 비만세포의 탈과립은 과립(그래뉼)안에 들어있는 β-hexosaminidase가 분비되는 퍼센트로 나타내었다. Fig. 1B에 서 보듯이, PMACI에 의해 β-hexosaminidase의 분비가 증 가하는 반면 DME를 전처리 한 경우 PMACI에 의한 βhexosaminidase의 분비가 농도의존적으로 억제됨을 관찰 하였다. 따라서 이 결과는 DME가 PMACI에 의한 비만세 포의 탈과립을 억제한다는 것을 시사한다.

#### TNF-a, IL-4, HDC 발현에 대한 DME의 억제 효과

비만세포가 활성화되면 TNF-α와 IL-4의 발현과 분비가 증가되는 것으로 알려져 있다[5, 7]. RBL-2H3 세포에 PMACI를 처리하여 TNF-α와 IL-4의 발현을 RT-PCR 방법 으로 관찰하였다. PMACI를 처리했을 때 TNF-α는 4시간에 서, IL-4는 3시간에서 mRNA양이 최고를 보이고(Fig. 2A), DME 전처리에 의해 그 발현이 현저히 줄어드는 것을 볼 수 있었다(Fig. 2B). 또한, 히스티딘 생성 효소인 HDC의 발현도 PMACI 처리에 의해 8시간에서 최고를 보이는 반 면(Fig. 2C), DME 전처리에 의해서는 그 발현이 현저히 감소되었다(Fig. 2D). 따라서 DME가 비만세포가 활성화 될 때 분비되는 TNF-α와 IL-4의 발현을 억제하며, 또한 HDC의 발현을 억제함으로써 히스타민 생성을 억제하여 비만세포로 인한 알러지 반응이나 염증반응을 완화할 것 으로 추측된다.

#### NF-ĸB 활성에 대한 DME의 효과

전사인자인 NF-κB에 의해 TNF-α와 IL-4의 발현이 조절 된다는 것이 알려져 있기 때문에[26] DME가 NF-κB p65의 활성을 억제하는지 관찰하였다. NF-κB가 활성화되면 세 포핵으로 가기 때문에 세포핵 추출물에서 p65의 양을 조 사해 본 결과 PMACI에 의해서 증가된 p65가 DME에 의해 현저히 감소됨을 볼 수 있었다(Fig. 3A). 또한 세포를 염색 하여 형광현미경으로 관찰하였을 때 세포질에 있던 p65 가 PMACI에 의해 핵으로 이동한 반면 DME 전처리를 한 경우 세포질에 더 많이 남아있음을 볼 수 있었다(Fig. 3B). 따라서 DME는 NF-κB의 활성을 억제함으로써 TNF-α와 IL-4의 발현을 저해하는 것으로 추측된다.

#### AP-1 활성에 대한 DME의 효과

인간 HDC의 발현이 전사인자인 AP-1에 의해 조절된다 는 보고[13]가 있었기 때문에 DME가 AP-1의 활성을 억제 하는지 관찰하였다. AP-1은 c-Jun과 c-Fos로 구성되고 활



Fig. 2. Effect of DM on the expression of TNF-α, IL-4 and HDC. (A) RBL-2H3 cells were incubated with 50 nM PMA and 1 mM A23187 for indicated time. (B) Cells were incubated with various concentrations of DME for 1 hr and then stimulated with 50 nM PMA and 1 mM A23187 for 4 hr. Total RNA was extracted and RT-PCR was performed. (C) RBL-2H3 cells were incubated with 50 nM PMA and 1 mM A23187 for indicated time. (D) Cells were incubated with various concentrations of DME for 1 hr and then stimulated with 50 nM PMA and 1 mM A23187 for indicated time. (D) Cells were incubated with various concentrations of DME for 1 hr and then stimulated with 50 nM PMA and 1 mM A23187 for 8 hr. Equal cytosolic extracts were analyzed by Western blotting with α-HDC antibody. Tubulin was estimated protein-loading control for each lane.



Fig. 3. Inhibitory effect of DME on nuclear translocation of NF-κB. RBL-2H3 cells were incubated with various concentrations of DME for 1 hr and then stimulated with 50 nM PMA and 1 mM A23187 for 30 min. (A) Nuclear extracts were analyzed by Western blotting with α-p65 antibody. HDAC3 was estimated protein- loading control for each lane. (B) The effects of DME (1,000 mg/ml) on nuclear accumulation of p65 were confirmed by confocal microscopy.

성화되면 세포핵으로 가서 DNA에 결합한다. 세포핵 추출 물에서 c-Jun과 c-Fos의 양을 조사해 본 결과 PMACI에 의해서 증가된 c-Jun 및 c-Fos가 DME에 의해 현저히 감소 됨을 볼 수 있었다(Fig. 4A). 또한 세포를 염색하여 형광현 미경으로 관찰하였을 때 세포질에 있던 c-Jun과 c-Fos가 PMACI에 의해 핵으로 이동한 반면 DME 전처리를 한 경 우 핵으로 많이 이동하지 않음을 볼 수 있었다(Fig. 4B, Fig. 4C). 따라서 DME는 AP-1의 활성을 억제함으로써 HDC의 발현을 저해하는 것으로 추측된다.

# Mitogen activated protein kinase (MAPK) 활성에 미 치는 DME의 효과

HDC 발현에 관여하는 신호전달 경로에 대해서 알려진 바가 많지 않으나 c-Jun kinase (JNK), extracellular signal regulated kinase (ERK), p38 kinase 등과 같은 MAPK에 의 해 조절된다는 보고가 있다. 인간 HDC의 발현이 ERK와 p38 kinase에 의해 조절되고 JNK와는 상관없다는 보고가 발표된 반면[3, 12], 생쥐의 대식세포에서 LPS에 의한 HDC 발현은 ERK와 JNK에 의해 조절된다는 보고가 있다



Fig. 4. Nuclear translocation of AP-1 is inhibited by DME. RBL-2H3 cells were incubated with various concentrations of DME for 1 hr and then stimulated with 50 nM PMA and 1 mM A23187 for 30 min. (A) Nuclear extracts were analyzed by Western blotting with α-c-Jun or α-c-Fos antibodies. HDAC3 was estimated protein-loading control for each lane. The effects of DME (1000 mg/ml) on nuclear accumulation of c-Jun (B) or c-Fos (C) were confirmed by confocal microscopy.

[11]. 따라서, 쥐 비만세포에서 HDC 발현에 MAPK가 관여 하는지 확인하였다. RBL-2H3 세포에 SP600125 (JNK 저 해제), PD98059 (ERK 저해제), SB203580 (p38 kinase 저해 제) 등의 단백질 인산화효소 저해제를 전처리한 후 PMACI 를 처리하고 HDC 발현을 관찰한 결과 이들 인산화효소 저해제에 의해 HDC의 발현이 현저히 억제되었다(Fig. 5A). 이 결과는 p38 kinase, ERK, JNK가 PMACI에 의한 HDC 발현에 주요한 신호전달경로로 작용함을 시사한다. 한편, 각 MAPK 활성에 미치는 DME의 영향을 알아본 결과 DME 전처리를 한 경우 p38 kinase, ERK, JNK의 활성이 모두 감소하였고 특히 p38 kinase의 활성이 가장 현저히 감소하였다(Fig. 5B). 이러한 결과들로 보아 DME가 MAPK 활성을 억제함으로써 HDC의 발현을 저해할 것으로 추측 된다.

본 연구에서 DME는 비만세포의 탈과립을 억제하고 히 스타민 생성 효소인 HDC의 발현을 억제하였다. 비만세포 가 탈과립 될 때 그래뉼 안에 이미 만들어져 있던 히스타 민, 헤파린, 단백분해 효소(비만세포-특이 프로테아제, chymase, tryptase)가 세포 밖으로 분비되는데, 이러한 탈 과립이 억제되면 히스타민에 의해 유도되는 혈관이완, 혈 관투과성 증가, 기도수축 등이 억제되고, 단백분해 효소 에 의해 유도되는 ILC2 (innate lymphoid cell 2)와 호산구 활성화, 호중구 및 호산구 이동 등이 억제되어 염증이 감 소된다[5, 7]. 또한 TNF-α와 IL-4도 비만세포의 그래뉼에 이미 만들어져 있다는 것이 밝혀졌는데[5], 본 연구에서는 DME가 TNF-α와 IL-4의 발현을 저해하였다. 비만세포에 서 만들어진 TNF-α는 수지상세포(dendritic cell)를 활성화 시키고, IL-4는 비만세포와 호염기구의 분화를 촉진화시 키고 B 세포에서 IgE 생성을 촉진하며 Th2 반응을 유도한



Fig. 5. Effect of DM on ERK, p38 and JNK activity. (A) RBL-2H3 cells were treated with SP600125 (10 mM), PD98059 (10 mM), or SB203580 (10 mM) for 30 min and stimulated with 50 nM PMA and 1 mM A23187 for 8 hr. Equal cytosolic extracts were analyzed by Western blotting with α-HDC antibody. (B) Cells were treated with various concentrations of DM for 1 hr and stimulated with 50 nM PMA and 1 mM A23187 for 15 min. Equal amount of cell extracts was analyzed by Western blotting with α-phospho-ERK1/2, α-phospho-p38 or α-phospho-JNK antibody. Western blot detection of non-phosphorylated kinases was estimated protein-loading control for each lane. 다고 알려져있다[7]. 따라서 DME는 TNF-α와 IL-4의 발현 을 억제함으로써 비만세포의 분화와 활성화를 억제하고 Th2 반응을 억제할 수 있을 것으로 추측된다.

쥐의 전신에 알러젠을 투여하면 HDC 발현이 증가되며 [6], 알러지 증상을 보이는 비강 점막, 만성 두드러기, 아토 피 환자의 keratinocyte에서 HDC 발현이 증가되어 있다고 보고되었다[9, 14, 15, 22]. HDC-knockout (HDC-KO) 생쥐 는 기도의 과민반응과 호산구 증가증을 낮추고 알러젠 특이 IgE 양을 감소시킨다고 발표되었다[16]. 또한 HDC 유전자 다형성(polymorphism) 중 특정 형태가 알러지 비 염 유발 위험을 높인다는 것이 발견되었다[8]. 더군다나 HDC의 발현을 조절함으로써 과민반응을 낮출 수 있다는 보고들이 발표되고 있다[10, 16, 19, 21, 24, 27]. 그러므로 HDC의 발현이 알러지 비염이나 아토피, 두드러기 등의 과민반응에 매우 중요하게 작용한다는 것을 알 수 있고, DME가 HDC 발현을 저해함으로써 이러한 과민반응을 억 제할 수 있을 것으로 추측할 수 있다. 또한 비만세포는 과민반응뿐만 아니라 관절염, 다발성 경화증, 제 1형 당 뇨, 패혈증, 장염, 심혈관계 질환, 암 등 질환의 유발이나 진행에 관여하는 것으로 알려져 있으므로[5, 7, 20, 25], 비만세포 활성을 억제하는 DME는 이러한 다양한 질환들 을 예방하거나 경감시키는 효과적인 약물로 개발될 가능 성을 가지고 있다고 사료된다.

요약을 하면, DME는 비만세포의 탈과립을 억제하고 TNF-α, IL-4, HDC 발현을 감소시켰으며, 신호전달 경로인 MAPK 활성을 낮추고 NF-κB와 AP-1을 저해하였다. 이러 한 결과들로 보아 DME는 비만세포가 관여하는 과민반 응, 관절염, 다발성 경화증 등 다양한 질환들의 치료제로 개발될 가능성을 가지는 것으로 사료된다. 후속 연구로 DME의 이러한 질환들에 관련된 생체내(*in vivo*) 효과를 검증할 필요가 있다고 사료된다.

#### 감사의 글

본 연구는 2021학년도 부산대학교 BK21 FOUR 대학원 혁신지원사업에 의한 연구임.

# The Conflict of Interest Statement

The authors declare that they have no conflicts of interest with the contents of this article.

### References

- Ahn, D. K. 2003. Illustrated book of Korean medicinal herbs. pp707, Kyohak Publishing Co.
- 2. Andrews, N. C. and Faller, D. V. 1991. A rapid micropreparation technique for extraction of DNA-binding pro-

teins from limiting numbers of mammalian cells. *Nucleic Acids Res.* **19**, 2499.

- Babina, M., Wang, Z., Franke, K., Guhl, S., Artuc, M. and Zuberbier, T. 2019. Yin-yang of IL-33 in human skin mast cells: Reduced degranulation, but augmented histamine synthesis through p38 activation. *J. Invest. Dermatol.* 139, 1516-1525. e1513.
- Chen, Y. L., Zhang, M., Hua, Y. F. and He, G. Q. 2001. Studies on polysaccharide alkaloids and minerals from *Dendrobium moniliforme* (1.) sw. *China J. Chin. Mater. Med.* 26, 709-710, 704.
- Da Silva, E. Z. M., Jamur, M. C. and Oliver, C. 2014. Mast cell function. J. Histochem. Cytochem. 62, 698-738.
- Deng, X., Wu, X., Yu, Z., Arai, I., Sasano, T., Sugawara, S. and Endo, Y. 2007. Inductions of histidine decarboxylase in mouse tissues following systemic antigen challenge: Contributions made by mast cells, non-mast cells and IL-1. *Int. Arch. Allergy Immunol.* 144, 69-78.
- Elieh Ali Komi, D., Wöhrl, S. and Bielory, L. 2020. Mast cell biology at molecular level: A comprehensive review. *Clin. Rev. Allergy Immunol.* 58, 342-365.
- Gervasini, G., Agúndez, J. A. G., García-Menaya, J., Martínez, C., Cordobés, C., Ayuso, P., Cornejo, J. A., Blanca, M. and García-Martín, E. 2010. Variability of the L-histidine decarboxylase gene in allergic rhinitis. *Allergy* 65, 1576-1584.
- Gutowska-Owsiak, D., Greenwald, L., Watson, C., Selvakumar, T. A., Wang, X. and Ogg, G. S. 2014. The histamine-synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin. *Br. J. Dermatol.* 171, 771-778.
- Han, N. R., Moon, P. D., Ryu, K. J., Jang, J. B., Kim, H. M. and Jeong, H. J. 2017. β-Eudesmol suppresses allergic reactions via inhibiting mast cell degranulation. *Clin. Exp. Pharmacol. Physiol.* 44, 257-265.
- Hirasawa, N., Torigoe, M., Ohgawara, R., Murakami, A. and Ohuchi, K. 2006. Involvement of MAP kinases in lipopolysaccharide-induced histamine production in RAW264 cells. *Life Sci.* 80, 36-42.
- Höcker, M., Rosenberg, I., Xavier, R., Henihan, R. J., Wiedenmann, B., Rosewicz, S., Podolsky, D. K. and Wang, T. C. 1998. Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. *J. Biol. Chem.* 273, 23046-23054.
- Höcker, M., Zhang, Z., Merchant, J. L. and Wang, T. C. 1997. Gastrin regulates the human histidine decarboxylase promoter through an AP-1-dependent mechanism. *Am. J. Physiol.* 272, G822-830.
- Inami, Y., Fukushima, M. and Murota, H. 2021. Correlation between histidine decarboxylase expression of keratinocytes and visual analogue scale in patients with atopic dermatitis. *J. Dermatol. Sci.* 103, 120-123.
- Kitamura, Y., Miyoshi, A., Murata, Y., Maeyama, K., Takeda, N. and Fukui, H. 2004. Increase in the level of histidine decarboxylase mrna expression in nasal mucosa of rats sensitized by toluene diisocyanate. *Inflamm. Res.*

**53**, S13-S14.

- Kozma, G. T., Losonczy, G., Keszei, M., Komlósi, Z., Buzás, E., Pállinger, E., Appel, J., Szabó, T., Magyar, P., Falus, A. and Szalai, C. 2003. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. *Int. Immunol.* 15, 963-973.
- Lee, Y. J., Kim, J. H. and Kim, Y. 2018. *Dendrobium moniliforme* stem extract inhibits lipoteichoic acid-induced inflammatory responses by upregulation of heme oxygenase-1. *J. Microbiol. Biotechnol.* 28, 1310-1317.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P. and Tsao, L. T. 2001. Two phenanthraquinones from *Dendrobium* moniliforme. J. Nat. Prod. 64, 1084-1086.
- 19. Mizuguchi, H., Das, A. K., Maeyama, K., Dev, S., Shahriar, M., Kitamura, Y., Takeda, N. and Fukui, H. 2016. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats. J. Pharmacol. Sci. 130, 212-218.
- Moriguchi, T. and Takai, J. 2020. Histamine and histidine decarboxylase: Immunomodulatory functions and regulatory mechanisms. *Genes Cells* 25, 443-449.
- Nurul, I. M., Mizuguchi, H., Shahriar, M., Venkatesh, P., Maeyama, K., Mukherjee, P. K., Hattori, M., Choudhuri, M. S., Takeda, N. and Fukui, H. 2011. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions. *Int. Immunopharmacol.* 11, 1766-1772.
- Papadopoulou, N., Kalogeromitros, D., Staurianeas, N. G., Tiblalexi, D. and Theoharides, T. C. 2005. Corticotropinreleasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria. *J. Invest. Dermatol.* 125, 952-955.

- Sanchez-Duffhues, G., Calzado, M. A., de Vinuesa, A. G., Appendino, G., Fiebich, B. L., Loock, U., Lefarth-Risse, A., Krohn, K. and Munoz, E. 2009. Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells. *Biochem. Pharmacol.* 77, 1401-1409.
- Tachibana, M., Wada, K., Katayama, K., Kamisaki, Y., Maeyama, K., Kadowaki, T., Blumberg, R. S. and Nakajima, A. 2008. Activation of peroxisome proliferator-activated receptor gamma suppresses mast cell maturation involved in allergic diseases. *Allergy* 63, 1136-1147.
- Wechsler, J. B., Szabo, A., Hsu, C. L., Krier-Burris, R. A., Schroeder, H. A., Wang, M. Y., Carter, R. G., Velez, T. E., Aguiniga, L. M., Brown, J. B., Miller, M. L., Wershil, B. K., Barrett, T. A. and Bryce, P. J. 2018. Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis. *Mucosal Immunol.* 11, 861-870.
- 26. Yan, J. and Greer, J. M. 2008. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. *CNS Neurol. Disord. Drug Targets* **7**, 536-557.
- Yoshihisa, Y., Andoh, T., Matsunaga, K., Rehman, M. U., Maoka, T. and Shimizu, T. 2016. Efficacy of astaxanthin for the treatment of atopic dermatitis in a murine model. *PLoS One* 11, e0152288.
- Zhao, C., Liu, Q., Halaweish, F., Shao, B., Ye, Y. and Zhao, W. 2003. Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from *Dendrobium moniliforme*. J. Nat. Prod. 66, 1140-1143.
- Zhao, W., Ye, Q., Dai, J., Martin, M. T. and Zhu, J. 2003. Allo-aromadendrane- and picrotoxane-type sesquiterpenes from *Dendrobium moniliforme. Planta Med.* 69, 1136-1140.

# 초록 : RBL-2H3 세포에서 탈과립과 histidine decarboxylase 발현에 미치는 석곡(*Dendrobium monilifrme*)의 효과

이영지<sup>†</sup>·마디 이스칸데르<sup>†</sup>·김영희<sup>\*</sup> (부산대학교 자연과학대학 분자생물학과)

석곡의 줄기는 전통 동양의학에서 위를 보하고, 진액을 보충하며, 열을 내리는 것에 사용되어 왔다. 본 연구에서는 RBL-2H3 세포에서 비만세포 탈과립과 TNF-α, IL-4, histidine decarboxylase (HDC) 발현에 미치는 석곡 열수추출물(DME)의 효과를 조사하였다. DME는 PMA와 Calcium ionophore 병행처리(PMACI) 에 의해 유도되는 β-hexosaminidase 분비와 TNF-α, IL-4, HDC 발현을 현저히 억제하였다. 또한 PMACI에 의해 유도되는 NF-κB, AP-1 활성과 p38 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2)과 c-Jun N-terminal kinase (JNK)의 인산화가 DME 전처리에 의해 저해되었다. 이러한 결과들은DME가 비만세포 탈과립을 억제하고, MAPKs/NF-κB/AP-1 신호전달 경로를 통해 TNF-α, IL-4, HDC 발현을 억제한다는 것을 시사한다. 본 연구결과들로 보아 DME는 과민반응과 염증성 질환을 치료하는 약물로 개발될 가능 성을 가지는 것으로 사료된다.