DOI QR코드

DOI QR Code

한국 아동 및 청소년의 단백질 섭취와 과체중 및 비만과의 연관성: 2014-2019년 국민건강영양조사 자료를 활용하여

Association between dietary protein intake and overweight and obesity among Korean children and adolescents: data from the 2014-2019 Korea National Health and Nutrition Examination Survey

  • Sumin, Kim (Department of Food Science and Nutrition, Jeju National University) ;
  • Kyungho, Ha (Department of Food Science and Nutrition, Jeju National University)
  • 투고 : 2022.12.23
  • 심사 : 2023.02.06
  • 발행 : 2023.02.28

초록

본 연구는 2014년부터 2019년까지 국민건강영양조사 자료를 이용하여 아동·청소년의 단백질 섭취와 성장지표 및 비만과의 관련성을 규명하고자 하였다. 본 연구의 대상자는 6-18세 아동 및 청소년 5,567명으로 1일 24시간 회상법 자료를 이용하여 단백질 섭취량을 평가한 결과는 다음과 같다. 대상자의 평균 총 단백질 에너지섭취비율은 14.5 ± 0.1%로 청소년 및 남아에서, 교육수준 및 가구소득수준이 높을수록 높았다. 단백질 섭취량을 삼분위수로 분류했을 때, 총 단백질 섭취량이 가장 높은 그룹이 가장 적게 섭취한 그룹에 비해 과체중 및 비만의 교차비가 1.36배 높았다. 동물성 단백질은 과체중 및 비만과 양의 연관성이 있었으나, 식물성 단백질은 유의한 연관성이 없었다. 동물성 단백질을 가장 많이 섭취한 남아와 청소년에서 가장 적게 섭취한 그룹에 비해 과체중 및 비만의 교차비가 유의하게 높았으나 지방 섭취량을 보정 한 이후에는 유의성이 사라졌다. 총 단백질 섭취량이 증가하면 동물성 단백질 섭취는 증가하지만 식물성 단백질은 감소했으며, 탄수화물 섭취량은 감소하고 지방 섭취량은 증가하는 경향을 보였다. 특히, 동물성 단백질을 가장 많이 섭취하는 그룹의 육류 섭취횟수는 4.1회로 가장 적게 섭취하는 그룹 1.2회에 비해 약 4배 높았다. 이상과 같은 결과를 통해 최근 10년간 우리나라 아동 및 청소년의 총 단백질과 동물성 단백질 섭취량은 증가하였으며, 총 단백질 및 동물성 단백질의 높은 섭취는 과체중 및 비만의 위험 증가와 관련이 있었다. 유년시절의 비만은 당뇨병, 심혈관질환 등과 같은 만성질환의 위험을 높이고, 성인 비만으로도 이어질 가능성이 높다. 특히, 식생활은 아동비만에 주요한 영향을 미치므로 향후 아동 및 청소년의 성장발달과 비만예방을 위해 전향적 연구수행을 통한 단백질 적정섭취 가이드라인 및 효과적인 영양교육 프로그램 마련이 필요할 것이다.

Purpose: Proteins are major components of the body and essential nutrients for proper growth and development. However, studies on protein intake in children and adolescents are insufficient. A few previous studies have reported the relationship with growth indicators, but results vary depending on the source of protein. Therefore, the current study investigates the relationship between protein intake and overweight and obesity among children and adolescents in Korea. Methods: Based on the 2014-2019 Korea National Health and Nutrition Examination Survey, 5,567 children and adolescents aged 6-18 years, who participated in a 24-hour dietary recall with information on height and weight, were included in this study. Protein intake was estimated as percentage of total energy (% of energy) and was classified into animal and plant protein according to the food source. Overweight and obesity were defined using the 2017 pediatric and adolescent growth chart. Results: Total protein intake of the subjects was estimated as 14.5% of total energy (animal protein 8.3% and plant protein 6.3%). The group with the highest total protein intake had a higher odds ratio (OR) of overweight/obesity than those with the least protein intake (OR, 1.36, 95% confidence interval (CI), 1.10-1.67, p for trend = 0.003). When classified by food source, the group with the highest animal protein intake had a significantly higher OR of overweight/obesity than subjects with the lowest intake (OR, 1.30, 95% CI, 1.05-1.61, p for trend = 0.016). However, plant protein was not significantly associated with overweight/obesity. Conclusions: These findings suggest that a high intake of animal protein in children and adolescents increases the risk of being overweight and obese. In order to develop normal growth and prevent obesity in the future, it is necessary to determine an appropriate protein intake level through nutrition education programs and prospective studies on balanced protein intake.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1G1A1008495).

참고문헌

  1. A.D.A.M. Medical Encyclopedia. Protein in diet [Internet]. Johns Creek (GA): Ebix, Inc., A.D.A.M.; c1997-2023 [cited 2023 Feb 1]. Available from: https://medlineplus.gov/ency/article/002467.htm.
  2. Wu G. Dietary protein intake and human health. Food Funct 2016; 7(3): 1251-1265.  https://doi.org/10.1039/C5FO01530H
  3. Tang M, Krebs NF. High protein intake from meat as complementary food increases growth but not adiposity in breastfed infants: a randomized trial. Am J Clin Nutr 2014; 100(5): 1322-1328.  https://doi.org/10.3945/ajcn.114.088807
  4. Thorisdottir B, Gunnarsdottir I, Palsson GI, Halldorsson TI, Thorsdottir I. Animal protein intake at 12 months is associated with growth factors at the age of six. Acta Paediatr 2014; 103(5): 512-517.  https://doi.org/10.1111/apa.12576
  5. Arnesen EK, Thorisdottir B, Lamberg-Allardt C, Barebring L, Nwaru B, Dierkes J, et al. Protein intake in children and growth and risk of overweight or obesity: a systematic review and meta-analysis. Food Nutr Res 2022; 66: 8242. 
  6. Jen V, Braun KV, Karagounis LG, Nguyen AN, Jaddoe VW, Schoufour JD, et al. Longitudinal association of dietary protein intake in infancy and adiposity throughout childhood. Clin Nutr 2019; 38(3): 1296-1302.  https://doi.org/10.1016/j.clnu.2018.05.013
  7. Pimpin L, Jebb S, Johnson L, Wardle J, Ambrosini GL. Dietary protein intake is associated with body mass index and weight up to 5 y of age in a prospective cohort of twins. Am J Clin Nutr 2016; 103(2): 389-397.  https://doi.org/10.3945/ajcn.115.118612
  8. Lin Y, Mouratidou T, Vereecken C, Kersting M, Bolca S, de Moraes AC, et al. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: the HELENA cross-sectional study. Nutr J 2015; 14(1): 10. 
  9. Segovia-Siapco G, Khayef G, Pribis P, Oda K, Haddad E, Sabate J. Animal protein intake is associated with general adiposity in adolescents: the teen food and development study. Nutrients 2019; 12(1): 110. 
  10. Assmann KE, Joslowski G, Buyken AE, Cheng G, Remer T, Kroke A, et al. Prospective association of protein intake during puberty with body composition in young adulthood. Obesity (Silver Spring) 2013; 21(12): E782-E789.  https://doi.org/10.1002/oby.20516
  11. Jen V, Karagounis LG, Jaddoe VW, Franco OH, Voortman T. Dietary protein intake in school-age children and detailed measures of body composition: the Generation R Study. Int J Obes 2018; 42(10): 1715-1723.  https://doi.org/10.1038/s41366-018-0098-x
  12. Korea Health Promotion Institution. Obesity Fact Sheets (2016-2020). Seoul: Korea Health Promotion Institution; 2021.
  13. Brisbois TD, Farmer AP, McCargar LJ. Early markers of adult obesity: a review. Obes Rev 2012; 13(4): 347-367.  https://doi.org/10.1111/j.1467-789X.2011.00965.x
  14. Morrill AC, Chinn CD. The obesity epidemic in the United States. J Public Health Policy 2004; 25(3-4): 353-366.  https://doi.org/10.1057/palgrave.jphp.3190035
  15. Song Y, Park MJ, Paik HY, Joung H. Secular trends in dietary patterns and obesity-related risk factors in Korean adolescents aged 10-19 years. Int J Obes 2010; 34(1): 48-56.  https://doi.org/10.1038/ijo.2009.203
  16. Korea Centers for Disease Control and Prevention. Korea Health Statistics 2018: Korea National Health and Nutrition Examination Survey (KNHANES VII-3). Cheongju: Korea Centers for Disease Control and Prevention; 2018.
  17. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014; 43(1): 69-77.  https://doi.org/10.1093/ije/dyt228
  18. Ministry of Health and Welfare (KR); The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2020. Sejong: Ministry of Health and Welfare; 2020.
  19. Korea Centers for Disease Control and Prevention. Guidelines for the 7th National Health and Nutrition Examination Survey (2016-2018). Cheongju: Korea Centers for Disease Control and Prevention; 2016.
  20. Korea Centers for Disease Control and Prevention. Clinical and Experimental Pediatrics, 2017 Child and Adolescent Growth Chart. Cheongju: Korea Centers for Disease Control and Prevention; 2017.
  21. van der Velde LA, Nguyen AN, Schoufour JD, Geelen A, Jaddoe VW, Franco OH, et al. Diet quality in childhood: the Generation R Study. Eur J Nutr 2019; 58(3): 1259-1269.  https://doi.org/10.1007/s00394-018-1651-z
  22. Kim CI. Socio-economic status and nutrient intake. Health Welf Policy Forum 2004; (92): 26-39.
  23. Jung SH. Comparison of dietary habits and nutritional intake condition in Korea elementary, middle and high school students according to residential area [master's thesis]. Seoul: Ewha Womans University Graduate School of Education; 2010.
  24. Lim MK. Association between sitting time and BMI-defined low weight and obesity in Korean adolescences. Korean J Health Educ Promot 2016; 33(5): 1-12.  https://doi.org/10.14367/kjhep.2016.33.5.1
  25. Centers for Disease Control and Prevention (US). National Health and Nutrition Examination Survey (NHANES) USA. Atlanta (GA): Centers for Disease Control and Prevention; 2017-2018.
  26. Ministry of Health, Labour, and Welfare (JP). National Health and Nutrition Survey (NHNS) Japan. Tokyo: Ministry of Health, Labour, and Welfare; 2019.
  27. Zhao J, Zuo L, Sun J, Su C, Wang H. Trends and urban-rural disparities of energy intake and macronutrient composition among Chinese children: findings from the China Health and Nutrition Survey (1991 to 2015). Nutrients 2021; 13(6): 1933. 
  28. Newby PK. Plant foods and plant-based diets: protective against childhood obesity? Am J Clin Nutr 2009; 89(5): 1572S-1587S.  https://doi.org/10.3945/ajcn.2009.26736G
  29. Mokhtari E, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. Association between plant-based diets and metabolic health status in adolescents with overweight and obesity. Sci Rep 2022; 12(1): 13772. 
  30. Astrup A, Raben A, Geiker N. The role of higher protein diets in weight control and obesity-related comorbidities. Int J Obes 2015; 39(5): 721-726.  https://doi.org/10.1038/ijo.2014.216
  31. White PJ, Newgard CB. Branched-chain amino acids in disease. Science 2019; 363(6427): 582-583.  https://doi.org/10.1126/science.aav0558
  32. Simonson M, Boirie Y, Guillet C. Protein, amino acids and obesity treatment. Rev Endocr Metab Disord 2020; 21(3): 341-353.  https://doi.org/10.1007/s11154-020-09574-5
  33. Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12(1): 35.
  34. Kim JH, Moon JS. Secular trends in pediatric overweight and obesity in Korea. J Obes Metab Syndr 2020; 29(1): 12-17.  https://doi.org/10.7570/jomes20002
  35. Navas-Carretero S, San-Cristobal R, Livingstone KM, Celis-Morales C, Marsaux CF, Macready AL, et al. Higher vegetable protein consumption, assessed by an isoenergetic macronutrient exchange model, is associated with a lower presence of overweight and obesity in the web-based Food4me European study. Int J Food Sci Nutr 2019; 70(2): 240-253.  https://doi.org/10.1080/09637486.2018.1492524
  36. Gunther AL, Buyken AE, Kroke A. Protein intake during the period of complementary feeding and early childhood and the association with body mass index and percentage body fat at 7 y of age. Am J Clin Nutr 2007; 85(6): 1626-1633.  https://doi.org/10.1093/ajcn/85.6.1626
  37. Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 2004; 80(2): 447-452.  https://doi.org/10.1093/ajcn/80.2.447
  38. Hua Y, Remer T. Adult stature and protein intake during childhood and adolescence from 3 years onward. J Clin Endocrinol Metab 2022; 107(7): e2833-e2842.  https://doi.org/10.1210/clinem/dgac205
  39. Willett W. Nutritional Epidemiology. 3rd ed. New York (NY): Oxford University Press; 2012.