DOI QR코드

DOI QR Code

Effects of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture on Anti-inflammatory Activities in Lipopolysaccharide-stimulated RAW 264.7 Cells

강황(薑黃) 계지(桂枝) 복합물이 RAW 264.7 세포에서 항염증 활성에 미치는 영향

  • Ji, Choi (Department of Herbal Food and Nutrition, Daegu Haany University) ;
  • Hae-Jin, Park (DHU Bio Convergence Testing Center) ;
  • Il-ha, Jeong (Department of Herbology, College of Korean Medicine, Daegu Haany University) ;
  • Min Ju, Kim (Research Center for Herbal Convergence on Liver Disease, Daegu Haany University) ;
  • Mi-Rae, Shin (Department of Herbology, College of Korean Medicine, Daegu Haany University) ;
  • Seong-Soo, Roh (Department of Herbology, College of Korean Medicine, Daegu Haany University) ;
  • Soon-Ae, Park (Department of Foodcare YAKSUN, Daegu Haany University) ;
  • Mi-Lim, Kim (Department of Foodcare YAKSUN, Daegu Haany University)
  • 최지 (대구한의대학교 한방식품학과) ;
  • 박해진 (대구한의대학교 바이오융복합시험센터) ;
  • 정일하 (대구한의대학교 한의학과 본초약리학교실) ;
  • 김민주 (대구한의대학교 간질환한약융복합활용연구센터) ;
  • 신미래 (대구한의대학교 한의학과 본초약리학교실) ;
  • 노성수 (대구한의대학교 한의학과 본초약리학교실) ;
  • 박순애 (대구한의대학교 푸드케어학부) ;
  • 김미림 (대구한의대학교 푸드케어학부)
  • Received : 2023.02.10
  • Accepted : 2023.03.25
  • Published : 2023.03.30

Abstract

Objectives : A persistent inflammatory response can cause diseases such as fibrosis, cancer, and allergies. This study aimed to investigate the anti-inflammatory activity of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture (CCM) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Methods : The total polyphenol and flavonoid contents of CCM were confirmed through an in vitro experiment. Also, radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Hydroxyl were confirmed. Moreover, ferric reducing antioxidant power (FRAP) activity were confirmed. After, CCM (50, 100, and 200 ㎍/mL) were applied to 0.1 ㎍/mL LPS-stimulated RAW264.7 cells. The levels of nitric oxide (NO) and pro-inflammatory cytokines in the supernatant fraction were determined. Also, the expressions of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were detected using Western blot. Results : As a result of in vitro experiments, there was an excellent antioxidant activity in CCM-treated cells. In addition, in RAW264.7 cells stimulated with LPS, the increased NO level was inhibited in a concentration-dependent manner by the treatment of CCM. In addition, inflammatory cytokines production were significantly inhibited in a concentration-dependent manner in CCM-treated group. CCM treatment significantly decreased the protein expressions of MAPKs. Moreover, the expressions of NF-κBp65 and cyclooxygenase-2 (COX-2) were significantly decreased when 200 mg/kg of CCM was applied, and phospho-inhibitor of nuclear factor kappa B-α (p-IκBα) and inducible nitric oxide synthase (iNOS) were significantly decreased at all concentrations treated with CCM. Conclusion : Our findings show that CCM exhibited excellent antioxidant activity and exhibited superior anti-inflammatory effect through the MAPKs and NF-κB pathways in LPS-stimulated RAW 264.7 macrophages.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업 (세부과제번호: PJ01425103)의 지원에 의해 수행되었습니다.

References

  1. Mangmool S, Limpichai C, Han KK, Reutrakul V, Anantachoke N. Anti-Inflammatory Effects of Mitrephora sirikitiae Leaf Extract and Isolated Lignans in RAW 264.7 Cells. Molecules. 2022;27(10):3313. doi: 10.3390/molecules27103313.
  2. Yoojam S, Ontawong A, Lailerd N, Mengamphan K, Amornlerdpison D. The Enhancing Immune Response and Anti-Inflammatory Effects of Caulerpa lentillifera Extract in RAW 264.7 Cells. Molecules. 2021;26(19):5734. doi: 10.3390/molecules26195734.
  3. Shin JY, Kang ES, Park JH, Cho BO, Jang SI. Anti-inflammatory effect of red ginseng marc, Artemisia scoparia, Paeonia japonica and Angelica gigas extract mixture in LPS-stimulated RAW 264.7 cells. Biomed Rep. 2022;17(1):63. doi: 10.3892/br.2022.1546.
  4. Shim JH. Anti-inflammatory Effect of Galium aparine Extract in RAW 264.7 Cells. Asian J Beauty Cosmetol 2018;16(2):233-42. doi.org/10.20402/ajbc.2017.0195.
  5. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281-6. doi: 10.2174/1568010054022024.
  6. Echizen K, Hirose O, Maeda Y, Oshima M. Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci. 2016;107(4):391-7. doi: 10.1111/cas.12901.
  7. Kim JH, Kim M, Hong S, Kwon B, Song MW, Song K, Kim EY, Jung HS, Sohn Y. Anti-inflammatory effects of Fritillaria thunbergii Miquel extracts in LPS-stimulated murine macrophage RAW 264.7 cells. Exp Ther Med. 2021;21(5):429. doi: 10.3892/etm.2021.9846.
  8. Hankittichai P, Buacheen P, Pitchakarn P, Na Takuathung M, Wikan N, Smith DR, Potikanond S, Nimlamool W. Artocarpus lakoocha Extract Inhibits LPS-Induced Inflammatory Response in RAW 264.7 Macrophage Cells. Int J Mol Sci. 2020;21(4):1355-73. doi: 10.3390/ijms21041355.
  9. Wang Z, Guan Y, Yang R, Li J, Wang J, Jia AQ. Anti-inflammatory activity of 3-cinnamoyltribuloside and its metabolomic analysis in LPS-activated RAW 264.7 cells. BMC Complement Med Ther. 2020;20(1):329-41. doi: 10.1186/s12906-020-03115-y.
  10. Oh HI, Park HB, Ju MS, Jung SY, Oh MS. Comparative Study of Anti-oxidant and Antiinflammatory Activities between Curcumae longae Radix and Curcumae longae Rhizoma. Kor. J. Herbology. 2010;25(1):83-91. doi:10.6116/KJH.2010.25.1.083.
  11. Cho SI, Jung S, Kim HW, Park JE, Kim YG. Inhibition of Cellular Proliferation by CURCUMAE LONGAE Rhizoma Extracts on MCF-7. Kor. J. Herbology. 2006;21(1):71-7.
  12. Lee YS, Lee DY, Kwon DY, Kang OH. Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract. Korean J. Medicinal Crop Sci. 2020;28(4):276-86. doi:10.7783/kjmcs.2020.28.4.276.
  13. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57(1):1-7. doi: 10.1055/s-2006-960004.
  14. Ahsan H, Parveen N, Khan NU, Hadi SM. Prooxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact. 1999;121(2):161-75. doi: 10.1016/s0009-2797(99)00096-4.
  15. Kim DS, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett. 2001;303(1):57-61. doi: 10.1016/s0304-3940(01)01677-9.
  16. Kim YS, Lee GS, Kim JH, Choi GY, Jeong SI, Cho SI, Ju YS, Kim HJ. A Study of Cutting Methods by Comparing the Contents of Cinnamic acid and Cinnamaldehyde in Different Parts of Cinnamomi Ramulus. Kor. J. Herbology. 2011;26(2):11-5. https://doi.org/10.6116/KJH.2011.26.2.011
  17. Yang H, Cheng X, Yang YL, Wang YH, Du GH. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural Regen Res. 2017;12(11):1860-4. doi: 10.4103/1673-5374.219048.
  18. Jeung WH, Nam W, Kim HJ, Kim JY, Nam B, Jang SS, Lee JL, Sim JH, Park SD. Oral Administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi Ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota. Prev Nutr Food Sci. 2019;24(2):136-43. doi: 10.3746/pnf.2019.24.2.136.
  19. Lee SJ. Bonchogangmok part one. Peoples Medical Publishing House. 1982:880-1.
  20. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12:221. doi: 10.1186/1472-6882-12-221.
  21. Malla MY, Sharma M, Saxena RC, Mir MI, Mir AH, Bhat SH. Phytochemical screening and spectroscopic determination of total phenolic and flavonoid contents of Eclipta Alba Linn. J. Nat. Prod. Plant Resour. 2013;3(2):86-91.
  22. Blosis MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;26:1199-200. doi.org/10.1038/1811199a0.
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10): 1231-7. doi: 10.1016/s0891-5849(98)00315-3.
  24. Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8:621. doi: 10.1186/s13104-015-1618-6.
  25. Min JY, Park YK. Effect of Dipsaci Radix Water Extract on LPS-induced Inflammatory Response in RAW264.7 Mouse Macrophages. Kor. J. Herbology. 2009;24(4):189-95.
  26. Cline MJ. Leukocyte function in inflammation: the ingestion, killing, and digestion of microorganisms. Ser Haematol. 1970;3:3-16.
  27. Kim KS. Clinical Use of Non-Steroidal AntiInflammatory Drugs. Korean J Otolaryngol. 2004;47(2):91-8.
  28. Yoon KR, Kim YJ, Lee E, Lee JM. Anti-inflammatory Effect of Coptidis Rhizoma. Kor. J. Herbology 2009;24(3):79-86.
  29. Jeong HJ, Kim ST, Park JJ, Kim KH, Kim KM, Jun WJ. Antioxidant Activities and Protective Effects of Hot Water Extract from Curcuma longa L. on Oxidative Stress-Induced C2C12 Myoblasts. J Korean Soc Food Sci Nutr. 2017;46(11):1408-13. doi: 10.3746/jkfn.2017.46.11.1408.
  30. Park JH, Park JY, Park SD. Anti-oxidative and Anti-inflammatory Effect of 7 Herbal Extracts and Methods of Herbal Formula Compositioning. Herbal Formula Science. 2014;22(2):87-103. doi:10.14374/HFS.2014.22.2.087.
  31. Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellular signal regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferongamma. J Infect Dis. 1999;179:939-44. doi:10.1086/314659.
  32. Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434-56. doi: 10.1016/s0891-5849(98)00092-6.
  33. Kubes P. Inducible nitric oxide synthase: a little bit of good in all of us. Gut. 2000;47:6-9. doi: 10.1136/gut.47.1.6.
  34. Park HJ, Lee JS, Lee JD, Kim NJ, Pyo JH, Kang JM, Choe IH, Kim SY, Shim BS, Lee JH, Lim SBN. The Anti-inflammatory Effect of Cinnamomi Ramulus. J Korean Oriental Med. 2005;26(2):140-51. doi: 10.4184/jkss.2005.12.2.140.
  35. Lee SH, Yoo JH, Kil KJ. Anti-inflammatory Activity of Cynanchi Atrati Radix Et Rhizoma Water Extracts via Regulation of MAPK in LPS-induced Murine Macrophage Cell Line, RAW 264.7. Kor. J. Herbology 2022;37(6):19-28.
  36. Choi SB, Bae GS, Jo IJ, Park KC, Seo SH, Kim DG, Shin JY, Gwak TS, Lee JH, Lee GS, Park SJ, Song HJ. The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells. Kor. J. Herbology. 2013;28(2):67-73. https://doi.org/10.6116/kjh.2013.28.2.67
  37. Kim MJ, Bae GS, Choi SB, Jo IJ, Kim DG, Shin JY, Lee SK, Kim MJ, Park SJ, Song HJ. The anti-inflammatory effect of Taraxacum coreanum on lipopolysaccharide induced inflammatory response on RAW 264.7 cells. Kor. J. Herbology 2014;29(6):21-6. https://doi.org/10.6116/KJH.2014.29.6.21.
  38. Kim EA, Kim SY, Ye BR, Kim J, Ko SC, Lee WW, Kim KN, Choi IW, Jung WK, Heo SJ. Antiinflammatory effect of Apo-9'-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. Int Immunopharmacol. 2018;59:3 39-46. doi: 10.1016/j.intimp.2018.03.034.
  39. Oh CH. Translation. simple immunology. 3nd rev. ed. seoul : Medical korea. 2006:161-200.
  40. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-κappa B1 precursor protein and the activation of NF-κappaB. Cell. 1996;78(5):773-85. doi: 10.1016/s0092-8674(94)90482-0.
  41. Zhu Z, Gu Y, Zhao Y, Song Y, Li J, Tu P. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways. Int Immunopharmacol. 2016;35:185-92. doi: 10.1016/j.intimp.2016.03.044.
  42. Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee KT. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol. 2008;8(3):431-41. doi: 10.1016/j.intimp.2007.11.003.