
J. lnf. Commun. Converg. Eng. 21(1): 45-53, Mar. 2023 Regular paper

45

Received 4 May 2022, Revised 8 January 2023, Accepted 19 January 2023
*Corresponding Author Jae-Hong Yim (E-mail: jhyim@kmou.ac.kr, Tel: +82-51-410-4318)
Department of Electronics and Communication Engineering, College of Engineering, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea

https://doi.org/10.56977/jicce.2023.21.1.45 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Copyright ⓒ The Korea Institute of Information and Communication Engineering 

 

 

Implementation of a Sightseeing Multi-function Controller 
Using Neural Networks

Jae-Kyung Lee  and Jae-Hong Yim*

Department of Electronics and Communication Engineering, College of Engineering, Korea Maritime and Ocean University, Busan, 

49112, Korea

Abstract

This study constructs various scenarios required for landscape lighting; furthermore, a large-capacity general-purpose multi-

functional controller is designed and implemented to validate the operation of the various scenarios. The multi-functional

controller is a large-capacity general-purpose controller composed of a drive and control unit that controls the scenarios and

colors of LED modules and an LED display unit. In addition, we conduct a computer simulation by designing a control system to

represent the most appropriate color according to the input values of the temperature, illuminance, and humidity, using the

neuro-control system. Consequently, when examining the result and output color according to neuro-control, unlike existing

crisp logic, neuro-control does not require the storage of many data inputs because of the characteristics of artificial intelligence;

the desired value can be controlled by learning with learning data.

Index Terms: Back-propagation, Learning, LED lighting, Multi-function, Neural network

I. INTRODUCTION

Numerous support for landscape lighting is required in the

future to create a smart city; however, owing to the lack of

technology and the burden of designing a scenario-creation

program, this is presently impossible. Therefore, this study

designs and implements a large-capacity general-purpose

landscape lighting multifunction control system to be easily

used by a landscape lighting installer without requiring a

special control system design and program configuration.

Furthermore, this system is designed to be compatible with

both 220 and 110 V AC worldwide. Based on local and for-

eign market surveys, 25 scenarios and 16-color high-capacity

artificial controls can be used to create high-capacity, intelli-

gence-driven, multi-color programs. The load capacity for

landscape lighting was designed and manufactured such that

the landscape lighting project could be easily connected and

used in a large capacity of 3,000 W [1].

Artificial intelligence was added to the program to create

the most appropriate emotional lighting suitable for the

atmosphere; a neuro-control system was used to implement

artificial intelligence.

We plan to install temperature and illumination sensors on

the system semiconductor board to adapt to the atmosphere,

that is, hot, cold, bright, and dark environments, as well as

develop it as a better function after market research [2].

Existing landscape lighting controllers do not have various

landscape scenarios, are simple, and are unsuitable for smart

landscape lighting; Therefore, this study constructs the func-

tions of various scenarios and adds neural networks to make

the color smart.

The controller was configured, implemented, and a com-

puter simulation was performed.

Previous studies on lighting control systems used conven-
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tional control; however, this study investigates a neural net-

work and compares it with the actual experimental production

operation and computer simulation. Consequently, unlike

conventional control, neural networks must not store many

data input values and are simply learned from the learning

data to control the desired values. Therefore LED lighting

control through artificial intelligence is a more organic and

efficient system than conventional LED lighting control [3].

II. CHARACTERISTICS OF LED LIGHTING

In the 20th century, advances in semiconductor technology

invented a technology that emits light from magic stones.

With the recent development of semiconductor light-emitting

diodes (LEDs) that are sufficiently bright for lighting, a

novel solid-state lighting technology has emerged.

This technology rapidly penetrates the existing lighting

device field by applying the unique light-emitting character-

istics of LED light sources, and this technology may be

widely used in general fluorescent lighting devices in the

future. The evolution of light sources for lighting is shown

in Fig. 1 [4].

The main lighting characteristics of the LED light sources

are summarized as follows. Structurally, unlike conventional

light sources, LED lights are solid-structured small-point light

sources, which do not use glass electrodes, filaments, or mer-

cury (Hg); therefore, they are solid, have a long life, and are

environmentally friendly. Accordingly, the lighting technology

that uses LEDs is called semiconductor lighting technology,

which uses a solid-structured light source, unlike conventional

lighting technologies. Optically vivid monochromatic light

emits poor colorability, light loss is small, visibility is

improved when applied to lighting fixtures requiring particular

colors (or wavelengths), and lamp loss can be significantly

decreased as a directional light source. In addition, it has a

better dimming control ability compared with existing light

sources; thus, it can easily emit various colors [5].

Electrically, a DC driving light source (AC is also possible

owing to diode characteristics) starts lighting above a spe-

cific voltage. After lighting, the current and light intensity

change sensitively even with a small voltage change. In

addition, because the rated voltage changes depending on the

ambient temperature, the environmental adaptation charac-

teristics become poor when driving at a constant voltage, and

in principle, it is driven by a constant current source. Accord-

ingly, to safely turn on an LED lighting device, a dedicated

power supply device (ballast) suitable for the characteristics

of the LED lamp is required. Environmentally, when the

temperature increases, the allowable current and light power

decrease, a large quantity of heat is generated, and the dynamic

characteristics change sensitively to changes in ambient and

operating temperatures. Suppose a current that exceeds the

allowable current flows. In that case, the life is significantly

reduced and the performance is significantly degraded;

therefore, appropriate heat treatment technology is required

in addition to a dedicated power supply.

An electrical dynamic characteristic LED has a unique

characteristic. The electrical polarity matches owing to the

characteristics of the diode, the current increases rapidly

above a certain voltage, and the brightness is directly pro-

portional to the current. The rated driving voltage of a single

LED varies according to the light-emitting color (semicon-

ductor type) and slightly at ambient temperature. Generally,

they operate at low voltages of 2-4 V [6].

In thermal dynamic LEDs, the light output and efficiency

increase with a decrease in the temperature of the junction

part, even if the current flow is constant. This is unlike con-

ventional light sources (incandescent and fluorescent lamps).

Therefore, the higher the temperature, the lower the light

output and light efficiency; if necessary, the heat generated

from the joint must be properly dissipated to improve the

lighting performance.

An LED is a solid light-emitting device without filaments

and bulbs. Suppose an appropriate power supply and radiator

are used. In that case, it can be used for more than 100,000 h

to maintain the lighting state without burnout. Accordingly,

LEDs are sometimes referred to as semi-permanent light

sources. However, all light sources gradually lose their light

output with time, which is less visible to humans to 80% of

their initial light intensity. By this standard, the lifetime of

the LED is currently estimated to be approximately 40,000

to 50,000 h. Therefore, compared with the lifetimes of 1,500

h and 10,000 h for incandescent bulbs and fluorescent lamps,

respectively, LEDs can be considered a long-life light source

with an extremely long life.

Because monochromatic light emission in a narrow wave-

length band and high-visibility LEDs emit monochromatic

light in a narrow wavelength band determined by the semi-

conductor type, excellent lighting performance and effective

light emission efficiency can be expected when applied to

lighting equipment requiring particular colors. For example,

a traffic light using a 15 lm/W incandescent bulb has a red

transmittance of approximately 10% and a light emission

Fig. 1. Brief history of lighting.
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efficiency of 1.5 lm/W, whereas an LED emits clear red

itself by more than 30 lm/W; thus, energy savings of more

than 90% are possible compared with the light bulb type. In

addition, LED lighting is expected to reduce maintenance

costs owing to long life and traffic accidents owing to

improved visibility. Major applications include emotional

lighting, traffic lights, aviation obstacles, emergency exits,

and lighting equipment that requires particular colors.

III. Neural Networks

Conventional control theories that rely entirely on the

mathematical models of control plants have shown limita-

tions in dealing with such systems. Obtaining accurate math-

ematical models for most real-world dynamic systems is

challenging because they are nonlinear and often time-vary-

ing with uncertain elements.

Neural networks are a part of artificial intelligence

involved in the creation of systems similar to humans that

can analyze situations on their own by accumulating knowl-

edge and experience through learning. Neural networks aim

to simplify the brain's biological neurons and their associa-

tions as well as model them mathematically to mimic the

intelligent actions of the brain. Neural networks are concep-

tually simple and learn by organizing their internal structures

for a given input [7].

Studies on neural networks were first conducted by

McCulloch and Fitz in 1943. They considered the human

brain as a calculator composed of numerous nerve cells. In

addition, we showed a model that performs simple logical

tasks, recognizing the significance of pattern classification

for identifying intelligent human behavior. Hebb proposed

the first learning rule to adjust the weight between two neu-

rons; this study had a significant influence on the study of

adaptive neural networks. In 1957, Rosenblatt published a

neural model called the “perceptron” that enabled the study

of practical neural networks. After Minsky and Papert et al.

extensively analyzed the perceptron model mathematically

and observed they could not solve simple nonlinear prob-

lems, such as the XOR function, research on neural networks

was in recession for 20 years [8].

However, in the 1980s, neural networks were newly devel-

oped by Hopfield et al. The error backpropagation algorithm,

the most commonly used learning algorithm for neural net-

works, was established by Werbos and Parker. Current neural

networks, which have developed into this historical background,

are widely applied to various fields, such as pattern recognition,

voice recognition, control systems, medical diagnosis, and com-

munication systems. First, this section examines the structures

of neural networks, learning algorithms, and neural network

models for pattern recognition and prediction to determine the

use of neural networks in this study [9-10].

A. Structure and Learning of Multi-Layered Neural 
Networks

The human brain is connected by numerous neurons.

Therefore, artificial neural networks similar to the human

brain can be called multi-layered structures and can be per-

formed with better performance by interconnected neurons.

In general, larger networks provide a larger computational

capacity. The arrangement of neurons in layers mimics the

layered structures of the brain. The most commonly used

neural network structure in applications, such as pattern and

system recognition or control is a multi-layered neural net-

work with error backpropagation algorithms. A typical

multi-layered neural network is shown in Fig. 2 [11].

Each circle in Fig. 2. is a neuron. This neural network con-

sists of an input layer with an input vector of x and an output

layer with an output vector of y; the layer between the input

and output layer is referred to as a hidden layer.

In Fig. 2, Oι, Oj, Oκ are the outputs of each neuron of the

input, hidden, and output layers; the weight between the

input and hidden layers is denoted as Wji, whereas that

between the hidden and output layers is denoted as Wkj.

Information is stored in the weights of the neural networks

and the components of the weights, Wji and Wkj are con-

stantly replaced with new information during the learning

process. In general, the representative algorithm of a neural

network that changes new information is the error backprop-

agation algorithm. The error backpropagation algorithm is a

least-mean square that self-subtracts and minimizes the error

between the output of the final output layer neuron and the

desired output calculated by each neuron in the neural net-

work [12-13].

First, the error backpropagation learning algorithm sends

the input x of the neural network to the hidden layer in the

input layer. Second, neurons in the hidden layer add the

product of the weights from each input layer and send the

result calculated through the activation function to the output

layer. The output layer outputs the same neuronal operations

Fig. 2. Multi-layer neural network.
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as the hidden layer. Currently, the output value of the neural

network differs from the desired target value and this differ-

ence is called an error. To minimize this error, the weight is

adjusted by partial differentiation of the error vector term of

the weight in each layer. That is, after calculating the error

of the output layer and the desired target value, the weight is

adjusted by the amount of weight change owing to the error

caused by backpropagation from the output to the hidden

layer, called error backpropagation.

The error backpropagation learning algorithm is mathe-

matically represented as follows.

First, the neuron outputs of the input, hidden, and output

layers are as shown in (2), (4), and (6).

neti = xi (i = 1, 2, 3, ..., n) (1)

 Oi = λ f [neti] (2)

 (3)

Oij= λ f [netj] (4)

(5)

Ok = λ f [netk] (6)

where f is the activation function, net is the product of the

previous neuron output and the weights in the current layer,

and λ is the slope of the activation function. To learn the

neural network, the error should be obtained, which is the

difference between the output value of the neural network

and the desired target value; this error is obtained as shown

in (7).

(7)

Because learning aims to minimize the error E by adjust-

ing the weight, the weight is changed in a negative gradient

direction to minimize errors. Therefore, the weight change

may be obtained by partial differentiation of the weight direc-

tion vector with respect to the error in the negatively inclined

direction. The weight change in each layer is expressed as

follows:

, η < C (8)

where η is a constant representing the learning rate. In addi-

tion, (8) can be expressed using the chain rule as follows:

= (9)

Suppose the activation function is linear. In that case, the

weight change is expressed as follows:

(10)

The weight change with respect to the hidden layer was

also changed in a negative gradient direction to minimize

errors.

, η < C (11)

Using the chain rule, (11) can be written as follows:

= (12)

Using (12), the amount of change in the weight between

the input and hidden layers is expressed as follows:

(13)

Therefore, the changes in weight are as follows.

(14)

(15)

As previously explained, error backpropagation algorithms

require desired response values to calculate error signals and

adjust the weights of neural networks. After the initial learn-

ing, the neural network enters a new set of data that has not

been used for learning.

The accuracy of a network with data other than a set of

learned data provides the neural network with the ability to

generalize. This refers to the reliability of neural networks.

After the learning and testing steps, neural networks can be

used to model pattern classifiers, unknown nonlinear func-

tions, and complex processes.

When learning neural networks, initial weights are set to

small random values and because this initialization influ-

ences the final output, the initial weights typically use a

value between −0.5 and 0.5. In addition, the degree of con-

vergence of the error backpropagation algorithm may vary

depending on the learning rate. The learning rate is selected

differently depending on the structure and application of the

neural network. No fixed criterion exists (a value generally

ranging from 0 to 1). Suppose a large learning rate is used.

In that case, overshoots may occur and the learning speed

may decrease if a small learning rate is used; therefore, it is

appropriately selected within the aforementioned range.

This study uses three input variables and three output vari-

ables in the structure of the multi-layer neural network, as
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shown in Fig. 2. The neurons were composed of three input,

10 hidden, and three output layer neurons, and were designed

as i = 3, j = 10, and k = 3. Here, a computer simulation was

conducted by designing the desired output R, G, and B val-

ues according to the input values of illuminance, tempera-

ture, and humidity. In addition, the R, G, and B values of the

output were combined to express the LED color.

IV. DESIGN AND IMPLEMENTATION OF A MULTI-

FUNCTION CONTROLLER

The internal configuration of the LED lighting control sys-

tem for landscape lighting comprises a power supply unit, an

AVR control unit, a CLCD output section unit, and an LED

control unit.

A. Power Supply Unit

A switched-mode power supply (SMPS), a device that

converts DC voltage into a square wave voltage using IC

devices, such as power transistors, and outputs DC voltage

after smoothing using a filter was used to apply power to the

LED lighting control board. The maximum voltage used in

the control board was 12 V DC; thus, an AC/DC converter

was used to convert 220 V AC to 12 V DC.

B. AVR Control Unit

The MCU of this system used the ATmega128 model,

which is an 8-bit RISC microcontroller from Atmel.

The AVR control unit receives the ADC values of the illu-

minance and temperature sensors; the humidity sensor con-

trols the color of each RGB LED module. Color control of

the RGB LED DRIVE was performed through a timer/

counter function. Utilizing this function, we created a pulse-

width modulation (PWM) output to adjust the luminance

ratio of red, green, and blue. A 16-bit counter was used as

the timer/counter. Among the various modes, such as FAST

PWM and CTC modes, the CTC mode was used. During

counting, the CTC mode continuously compared the count-

ing and OCR values and outputted a matching signal when

the counting and OCR values were equal, thereby outputting

a pulse waveform to the waveform generator.

C. CLCD Output Section Unit

The LCD used was a typical 16 × 4 line character LCD

(CLCD). It was implemented such that the PWM values of

red, green, and blue currently output through the CLCD can

be checked in real time.

D. LED control unit

An RGB LED module was used to provide the calculated

value in the RGB color. Because the output value from the

MCU was 5 V DC, which is the TTL voltage level, the RGB

LED module could not be driven. The driving voltage of the

RGB LED module was 12 V DC, which was directly applied

by the SMPS unit (the power supply unit). The high and low

outputs from the MCU were connected to the gate of the

MOSFET and served to switch the RGB LED module on and

off. The color was expressed by applying power to the mod-

ule according to the signal from the gate end.

The RGB LED module had four lines, R, G, B, and COM,

and the MOSFET was connected to the other three lines,

except COM, to control the output color.

A large-capacity general-purpose multi-function controller

for landscape lighting was constructed, as shown in Fig. 3.

The scenario actions, such as “switching 16-color panorama

program”, “16-color program with dimming”, and “16-color

program with 3 flashes”. The operation of each scenario can

be selected ON/OFF the selection switch and the operation

speed of the operation scenario was adjusted using a separate

speed control switch from the slowest 0 to the fastest 9. The

speed is expressed numerically in the 7-segment. The picture

of large-capacity general-purpose multi-functional control-

lers for landscape lighting is shown in Fig. 3.

In the discussion after the experiment, we configured the

sightseeing multi-function controller that was designed and

manufactured, as shown in Fig. 3. All the configured scenar-

ios worked well.

Using the multi-function and neural networks, the actual

configuration of a smart landscape lighting controller com-

prised 25 types of scenarios and 16 color expressions. The

simulation results are listed in Tables 1, 2, and 3. In addition,

the input voltage of the controller was designed for both 12

and 24 V DC.

Fig. 3. Multi-function controller.
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V. COMPUTER SIMULATION

In this study, three input and three output variables were

used in the structure of the multi-layer neural network, as

shown in Fig. 2. The neurons were composed of three input,

10 hidden, and three output layer neurons, and were designed

as i = 3, j = 10, and k = 3. We conducted a computer simula-

tion designed to output the desired R (red), G (green), and B

(blue) values according to the input values of illuminance,

temperature, and humidity. The R (red), G (green), and B

(blue) values of the output were combined to express the

LED colors.

The desired R (red), G (green), and B (blue) values

according to the illuminance, temperature, and humidity val-

ues provided to the designed input values of the neurocon-

troller are listed in Table 1. This is used as learning data for

the neurocontroller.

The crisp and neuro-control output values under the same

conditions are listed in Table 2. As shown in the table, the

output value is the same under the same input conditions as

the crisp and neuro-control output values.

The resulting values derived from the simulation of the

neurocontroller are listed in Table 3. As shown in Table 3,

the neurocontroller even controls any input value other than

a predetermined value with the learned data, indicating the

most appropriate output. However, crisp control cannot be

output if the illumination, temperature, and humidity values

are ambiguous values other than those listed in Table 1.

The output of the neurocontroller was determined by

learning the various input variables and outputs. Even with

the same input value, the output value may vary depending

on the output data of experts and designers in the area

learned. Unlike crisp logic, storing an input value of a large

amount of data is unnecessary and it has the advantage of

being controlled to a desired value by simply learning with

learning data. Owing to these characteristics, LED lighting

control through the neuro-control system is a more organic

and efficient system compared with general LED lighting

control.

Table 1. R, G, and B output values according to the illuminance, temperature, and humidity input (learning data)

Illuminance (lux) Temperature (oC) Humidity (%) R, G, B (OUT) LED Color

No. 1 10 10 30 R=255, G=0, B=0 Red

No. 2 10 10 50 R=224, G=255, B=255 Light Cyan

No. 3 10 10 70 R=255, G=165, B=0 Orange

No. 4 10 25 30 R=173, G=255, B=47 Green Yellow

No. 5 10 25 50 R=255, G=255, B=0 Yellow

No. 6 10 25 70 R=30, G=144, B=255 Dodger Blue

No. 7 10 40 30 R=0, G=255, B=255 Cyan

No. 8 10 40 50 R=224, G=255, B=255 Light Cyan

No. 9 10 40 70 R=238, G=130, B=238 Violet

No. 10 25 10 30 R=255, G=182, B=193 Light Pink

No. 11 25 10 50 R=128, G=0, B=128 Purple

No. 12 25 10 70 R=255, G=182, B=193 Light Pink

No. 13 25 25 30 R=255, G=255, B=0 Yellow

No. 14 25 25 50 R=0, G=255, B=0 Green

No. 15 25 25 70 R=30, G=144, B=255 Dodger Blue

No. 16 25 40 30 R=255, G=0, B=255 Magenta

No. 17 25 40 50 R=238, G=130, B=238 Violet

No. 18 25 40 70 R=173, G=255, B=47 Green Yellow

No. 19 40 10 30 R=255, G=255, B=0 Yellow

No. 20 40 10 50 R=255, G=165, B=0 Orange

No. 21 40 10 70 R=0, G=255, B=255 Cyan

No. 22 40 25 30 R=173, G=255, B=47 Green Yellow

No. 23 40 25 50 R=255, G=182, B=193 Light Pink

No. 24 40 25 70 R=128, G=0, B=128 Purple

No. 25 40 40 30 R=0, G=255, B=255 Cyan

No. 26 40 40 50 R=255, G=0, B=255 Magenta

No. 27 40 40 70 R=0, G=0, B=255 Blue
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VI. Conclusion

In this study, several scenarios required for landscape

lighting were constructed and a large-capacity general-pur-

pose multi-functional controller to operate the scenario was

designed and implemented to validate the operation.

The hardware of the control system comprised an AVR

control, LED module output, LED control, scenario selection

switch, and operating speed display units. It was manufac-

tured as a 13-channel device. The CPU used was ATme-

ga128 and an FET was used to control the current signal. To

operate the CPU, 12 V DC was converted into 5 V DC using

a 7805 regulator.

In addition, a computer simulation was conducted by

designing a control system to represent the most appropriate

color according to the input values of the temperature, illu-

minance, and humidity using the neuro-control system. Con-

sequently, from the results and output colors according to

neuro-control, unlike the existing crisp-logic, neuro-control

does not require the storage of many data inputs because of

the characteristics of artificial intelligence and can control

the desired value by learning with learning data. Therefore,

LED lighting control through the neuro-control system is a

more organic and efficient system compared with the general

LED lighting control.

In future studies, the use of the low-power MSP432 MCU

from Texas Instruments, which is more advanced than Atme-

ga128, will lead to better performance with the emerging

neural network’s machine learning technology.
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Table 2. Comparison of crisp-neural output results under the same conditions

Illuminance (lux)Temperature (oC) Humidity (%) Crisp Output Neural Output LED Color

No.1 10 10 30 R=255, G=0, B=0 R=255, G=0, B=0 Red

No.2 10 10 50 R=224, G=255, B=255 R=224, G=255, B=255 Light Cyan

No.3 10 10 70 R=255, G=165, B=0 R=255, G=165, B=0 Orange

No.4 10 25 30 R=173, G=255, B=47 R=173, G=255, B=47 Green Yellow

No.5 10 25 50 R=255, G=255, B=0 R=255, G=255, B=0 Yellow

No.6 10 25 70 R=30, G=144, B=255 R=30, G=144, B=255 Dodger Blue

No.7 10 40 30 R=0, G=255, B=255 R=0, G=255, B=255 Cyan

No.8 10 40 50 R=224, G=255, B=255 R=224, G=255, B=255 Light Cyan

No.9 10 40 70 R=238, G=130, B=238 R=238, G=130, B=238 Violet

No.10 25 10 30 R=255, G=182, B=193 R=255, G=182, B=193 Light Pink

No.11 25 10 50 R=128, G=0, B=128 R=128, G=0, B=128 Purple

No.12 25 10 70 R=255, G=182, B=193 R=255, G=182, B=193 Light Pink

No.13 25 25 30 R=255, G=255, B=0 R=255, G=255, B=0 Yellow

No.14 25 25 50 R=0, G=255, B=0 R=0, G=255, B=0 Green

No.15 25 25 70 R=30, G=144, B=255 R=30, G=144, B=255 Dodger Blue

No.16 25 40 30 R=255, G=0, B=255 R=255, G=0, B=255 Magenta

No.17 25 40 50 R=238, G=130, B=238 R=238, G=130, B=238 Violet

No.18 25 40 70 R=173, G=255, B=47 R=173, G=255, B=47 Green Yellow

No.19 40 10 30 R=255, G=255, B=0 R=255, G=255, B=0 Yellow

No.20 40 10 50 R=255, G=165, B=0 R=255, G=165, B=0 Orange

No.21 40 10 70 R=0, G=255, B=255 R=0, G=255, B=255 Cyan

No.22 40 25 30 R=173, G=255, B=47 R=173, G=255, B=47 Green Yellow

No.23 40 25 50 R=255, G=182, B=193 R=255, G=182, B=193 Light Pink

No.24 40 25 70 R=128, G=0, B=128 R=128, G=0, B=128 Purple

No.25 40 40 30 R=0, G=255, B=255 R=0, G=255, B=255 Cyan

No.26 40 40 50 R=255, G=0, B=255 R=255, G=0, B=255 Magenta

No.27 40 40 70 R=0, G=0, B=255 R=0, G=0, B=255 Blue
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