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Abstract

This paper proposes an imputation method using a bidirectional k-nearest components search based local linear regression

method. The bidirectional k-nearest-components search method selects components in the dynamic range from the missing

points. Unlike the existing methods, which use a fixed-size window, the proposed method can flexibly select adjacent

components in an imputation problem. The weight values assigned to the components around the missing points are calculated

using local linear regression. The local linear regression method is free from the rank problem in a matrix of dependent

variables. In addition, it can calculate the weight values that reflect the data flow in a specific environment, such as a blackout.

The original missing values were estimated from a linear combination of the components and their weights. Finally, the

estimated value imputes the missing values. In the experimental results, the proposed method outperformed the existing methods

when the error between the original data and imputation data was measured using MAE and RMSE.

Index Terms: Data Imputation, Missing Data, Bidirectional knc, Local Linear Regression, Blackout

I. INTRODUCTION

Missing problems caused by technical issues, such as

errors or breakdowns, appear at various stages of the data

collection process [1,2,3]. In general, the value of the point

or block where the missing occurs is filled with “NULL.”

Missing values can lead to biased results and affect the per-

formance of machine learning algorithms [1,3,4]. In particu-

lar, “blackouts” are extreme missing scenarios, in which all

the sensors are quiet simultaneously, causing widespread and

aligned missing blocks [5]. Until recently, few algorithms

have imputed missing blocks with high accuracy in black-

outs [5].

Various methods have been proposed for addressing this

problem [6-10]. Traditional methods impute missing values

using neighboring  data components. The last observation

carried forward (locf) [6], next observation carried backward

(nocb), and nearest methods impute the missing values from

a missing point to its nearest component. These methods are

fast and have high imputation performance; however, their

performance degrades dramatically when missing scenarios,

such as a blackout, occur [7].

In addition, the mean method [8,9] estimates the missing

values   by linearly combining the surrounding components

  and weights based on a window within the given data. The

k-nearest neighbor (knn) method [10] estimates the imputa-

tion values   from the neighboring data closest to the given

data in an entire dataset. Despite these methods showing

high imputation performance, they are limited when the

missing rate increases. The mean method cannot estimate a

missing value when all the neighboring values   in the win-

dow are missing. The knn method does not operate normally

when a missing value occurs commonly at the same point in

the entire dataset. The mean method cannot estimate a miss-
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ing value when all the values   in the window are missing, and

the knn method does not operate normally when a missing

value occurs in common with the same data point in all the

datasets.

This paper proposes an imputation method for an environ-

ment with a high missing rate, such as a blackout. The bidi-

rectional k-nearest-components search method selects the

components in the dynamic range from the missing points.

The weight values assigned to the components around the

missing points are calculated using local linear regression

[11]. The original values of the missing positions are esti-

mated from a linear combination of the neighboring compo-

nents and their weights. Finally, the estimated value imputes

the missing values. In the experimental results, the proposed

method showed superior performance compared to that of

the existing methods when the error between the original

data and imputation data was measured using the mean abso-

lute error (MAE) and root mean square error (RMSE).

The remainder of this paper is organized as follows. Sec-

tion II describes the proposed method for imputing missing

data. This explains the bidirectional k-nearest-components

search method and missing data imputation using local linear

regression. The experimental results of data imputation are

described in Section III. Discussion and conclusions are pre-

sented in Section IV.

II. PROPOSED METHODS

This paper proposes an imputation method using a bidirec-

tional k-nearest-components-search-based local linear regres-

sion method. The proposed method estimates missing values

from the adjacent components of the missing points. The

overall process is as follows:

1. The occurrence of the missing is checked for each data

point.

2. When a missing point occurs at a given data point, k-

components   (normally measured) and corresponding

location information are searched in both directions

based on the point.

3. The local linear regression method is applied to esti-

mate the imputation values   for the missing values. The

regression analysis determines the optimal parameters

(weights), for which the residual is minimized.

4. Finally, a weight is applied to the input of the given

data (k-components) to estimate the missing values.

The estimated values impute the missing values.

The overall flow of the proposed method is shown in Fig. 1.

A. Bidirectional k-nearest-components

In the imputation problem, interpolation methods, such as

the mean method, estimate missing values   from components

within a symmetrically fixed range called a “window”

around the missing point. These methods exhibit relatively

high imputation performance in an ideal situation where no

missing data are available. However, these methods are lim-

ited when the missing rate (l) is high.

We considered strongly correlated time-series data. In Fig

2, the missing value, x
t
 can be assumed 10. In Fig. 2(a),

the mean method estimates the missing values as 10 by

applying a single weight of 0.25 to all the components. The

mean method works well in an ideal situation without miss-

ing values (l = 0%). However, as the missing rate within the

window increases, the imputation performance gradually

decreases. Fig. 2 (b) shows a significant difference between

the original and estimated values when the missing rate

reaches 50% within the window. As shown in Fig. 2 (c),

missing values cannot be imputed when l becomes 100%

extremely. Therefore, the value of x
t
 is still unchanged. Con-

sequently, the imputation performance depends on the miss-

ing rate within a fixed window size.

Therefore, in an imputation problem, the selection of the

adjacent components must be flexible. This paper proposes a

bidirectional k-nearest-components (bknc) search method to

select components from the missing point. The bknc search

method finds the left and right non-missing k-components

centered on the missing point. Accordingly, the data values

  and respective index information of 2k-components are

extracted. Because bknc searches for dynamic ranges, the

window size is symmetric or asymmetric depending on the

missing point.

The function  for determining whether the input data

 is missing for each data point (x
t
) is defined as:

Fig. 1. Overall procedure of the proposed method.
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(1)

Based on the missing point t, bknc searches each normally

measured k-component in both the directions and extracts

the corresponding index vector .

In Fig. 2(c), v
t
 is composed of 

when k = 2 is applied. Therefore, the overall window size

becomes 10, and the start and end indices become min(v
t
)

and max(v
t
), respectively.

B. Weight Assignment and Imputation

In general, weights are required to be applied to neighbor-

ing components for imputation. Traditional methods, such as

locf (left side), nocb (right side), and nearest (both sides),

assign 100% weight to the component nearest to the missing

point. Other methods apply individual weights to all the

missing values   within a fixed-size window. The method of

calculating the weight is to assign the same weight

 to all the positions or to assign the

weight inversely proportional to the distance (w = 1/distance).

Traditionally, these methods reduce the average error

between the original and imputed data; however, it is diffi-

cult to reflect the data flow in a specific environment, such

as a blackout.

In this paper, the weights were calculated using local lin-

ear regression. Regression determines the optimal weights

(parameters) for estimating the dependent variable from the

independent variables [12]. Accordingly, it is possible to

impute a value that reflects the data flow by assigning an

appropriate weight to the surrounding values   from the posi-

tion where the missing data occur. To calculate weights from

local linear regression, it is necessary to construct an inde-

pendent variable matrix and dependent variable vector from

the auxiliary set . Higher performance can be

expected when an auxiliary set without missing values is

assigned.

(2)

In Eq. (2), the independent variable matrix  is

  composed of column vectors corresponding to v
t
 in the auxiliary

dataset ; the dependent variable vector 

becomes the column vector at point t in z. Note that all the

values   are normally measured. Finally, the weight vector

 is defined as:

(3)

In Eq. (3),  is invertible ( ) because the

matrix  is full column rank.

The final step is the imputation phase. From the index vec-

tor v
t
 extracted from the bknc, components vector 

of x
t
 is constructed. From the linear combination of  and

w
t
, the missing value  can be estimated as:

(4)

Finally, the missing value x
t
 is imputed by .

III. RESULTS

In the experiment, electronic nose (E-nose) data [13] were

used to confirm the imputation performance of the proposed

method. The E-nose consisted of eight gases measured using

16 sensor arrays. Each sensor was recorded at a sampling

rate of 10 Hz for 200s. Consequently, the sensor array was

stored in the form of a 2,000×16 matrix, which was con-

verted into a 1×32,000-dimensional vector for use in the

experiment. Missing data were generated by randomly

assigning missing values (“NULL”) to points in the 32,000

dimensions according to the missing rate (l = 0.1~0.9). The

experiment excluded l = 1, where all data points are “NULL”.

Fig. 2. Missing scenarios at fixed window size.
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The imputation performance of each method was evalu-

ated by measuring the MAE and RMSE of the imputed and

original data. MAE and RMSE are defined as:

(5)

In addition, the proposed method was compared with the

experimental results of existing methods, such as locf, nocb,

nearest, linear, spline, mean, median, and knn. In the initial

parameter-setting stage, the window size was set to five for

the mean and median methods using the windows. In the

proposed method, a dynamic window size was created for

each data point by setting parameter k of bknc to 2.

Figs. 3(a) and (b) show the measurement results of MAE

and RMSE according to the missing rate. All the numerical

values were adjusted to a logarithmic scale. From the experi-

mental results, the proposed method exhibits the best perfor-

mance for all the missing rates. Interpolation-based imputation

methods (linear and spline) [14] and single-component-

based methods (locf, nocb, and nearest) performed well, in

that order. In the window-based mean and median methods,

the performance decreased sharply from a missing rate of

0.3. However, knn showed a robust imputation performance

at a higher missing rate than at lower missing rate.

As listed in Table 1, when the missing rate is 0.1, the pro-

posed method shows an MAE lower than 0.0001~0.0030

compared to that of the existing methods. There were differ-

ences between 0.0005~0.0273 (l = 0.5), and 0.0040~0.5166

(l = 0.9), even when the missing rate increased. In Table 2,

the mean RMSE values according to the missing rate were

0.4601~3.5811 (l = 0.1), 2.2301~38.3308 (l = 0.5), and 9.0724

~172.1899 (l = 0.9), respectively. As a result, the proposed

method outperformed other methods for both the indicators.

Fig. 4 shows the results of the MAE measurements

between the imputed and original data for each data point of

the first sensor during the initial 10s interval when l = 0.7.

Existing methods do not operate normally when a blackout

occurs, as the missing rate increases. As shown in Table 1,

the proposed method exhibits a high imputation perfor-

mance. However, as mentioned earlier, the mean and median

methods using a fixed-size window failed to perform imputa-

tion when the missing block size was larger than the window

size, resulting in a significant error value. The knn method

had a large error when a missing value occurred in common

with the same data point in all the datasets.

IV. DISCUSSION AND CONCLUSIONS

Missing data is an unavoidable problem in the real world.

Various methods have been proposed to solve this problem;

however, they have limitations in extreme situations, such as

blackouts.

In this paper, we propose a robust imputation method for

blackouts. The proposed method has several advantages.

The proposed method can secure the number of variables

required for modeling regardless of the missing rate. In addi-

tion, the value can be estimated by reflecting the flow of

data using the regression analysis. Furthermore, modeling is

possible without the problem of lack of rank in the matrix of

dependent variables using the local linear regression analy-

sis. In the experimental results, MAE and RMSE were mea-

sured to verify the imputation performance. The proposed

method was superior to the existing methods and performed

robustly even when a blackout occurred, owing to an increase
Fig. 3. Comparison of error between imputed and original data according to

missing rate (0.1~0.9) (a) MAE (b) RMSE
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in the missing rate.

However, the proposed method is limited because a sepa-

rate clean dataset is required. Similar to the knn method, the

imputation performance is significantly lowered if the neigh-

bor is used only within the entire dataset. In addition, the

determination of the number of components (k) was passive.

Despite some limitations, the proposed method showed

high imputation performance, even with an increase in the

missing rate. Consequently, the proposed method can address

the missing problems in the real world. In the future,

machine learning-based methods may be considered when

estimating missing values.

Fig. 4. MAE results between imputed and original data at l = 0.7.

Table 1. Mean absolute error between the imputed and original data

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

locf 0.0010 0.0020 0.0032 0.0044 0.0060 0.0079 0.0103 0.0137 0.0232

nocb 0.0010 0.0020 0.0032 0.0045 0.0060 0.0077 0.0103 0.0146 0.0238

nearest 0.0009 0.0019 0.0029 0.0040 0.0052 0.0066 0.0085 0.0110 0.0164

linear 0.0007 0.0014 0.0023 0.0032 0.0043 0.0055 0.0071 0.0090 0.0132

spline 0.0008 0.0017 0.0028 0.0040 0.0055 0.0073 0.0097 0.0133 0.0222

mean 0.0008 0.0019 0.0046 0.0129 0.0311 0.0733 0.1551 0.2938 0.5258

median 0.0008 0.0019 0.0046 0.0129 0.0311 0.0733 0.1551 0.2938 0.5258

knn 0.0037 0.0093 0.0143 0.0194 0.0252 0.0343 0.0559 0.1194 0.2885

proposed method 0.0006 0.0013 0.0021 0.0029 0.0038 0.0048 0.0059 0.0073 0.0093
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Table 2. Root mean square error between the imputed and original data

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

locf 1.1189 1.7554 2.8781 3.3571 4.7288 6.2128 7.9067 9.9958 17.9357

nocb 1.4619 1.8928 3.7340 4.6760 5.7957 6.5312 9.7803 14.9252 22.9156

nearest 1.4122 1.8694 3.4337 4.1596 4.9267 5.9168 8.3867 10.7663 16.2364

linear 0.9961 1.4074 2.5418 2.9053 3.6446 4.5023 6.1787 7.9292 12.2796

spline 1.1071 1.7618 2.7279 3.3222 4.3230 5.3873 6.9168 9.9372 20.6975

mean 1.2222 3.1959 10.2908 23.4784 39.7454 63.2239 93.8461 130.4195 175.3971

median 1.0255 3.0754 10.2596 23.4461 39.7299 63.2177 93.8423 130.4182 175.3967

knn 4.1171 7.0537 9.1154 10.9186 14.6979 23.3330 43.1346 77.8462 134.4522

proposed method 0.5360 0.7906 1.0068 1.2135 1.4145 1.6254 1.8412 2.2565 3.2072


