DOI QR코드

DOI QR Code

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei, Zhou (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University) ;
  • Hadi, Haeri (Department of Mining Engineering, Higher Education Complex of Zarand) ;
  • Vahab, Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Mohammad Fatehi, Marji (Department of Mine Exploitation Engineering, Faculty of Mining and Metallurgy, Institute of Engineering, Yazd University) ;
  • A.A., Naderi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Mohammadreza Hassannezhad, Vayani (Department of CIvil Engineering, University of Tabriz)
  • 투고 : 2022.05.08
  • 심사 : 2022.11.17
  • 발행 : 2023.01.25

초록

In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.

키워드

과제정보

This work was financially supported by the National Natural Science Foundation of China (52204104), the Open Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control (2011DA105287-FW201905), the Science and Technology Department of Sichuan Province (2023YFH0022), the Open Fund of Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province (20kfgk01), the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering, China. University of Mining & Technology (SKLGDUEK2111), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology (SKLGP2021K009), the Sichuan University postdoctoral interdisciplinary Innovation Fund.

참고문헌

  1. Belrhiti, Y., Dupre, J.C., Pop, O., Germaneau, A., Doumalin, P., Huger, M. and Chotard, T. (2017), "Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials", J. Eur. Ceram. Soc., 37(5), 2285-2293. https://doi.org/10.1016/j.jeurceramsoc.2016.12.032.
  2. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. http://doi.org/10.12989/scs.2019.31.2.113.
  3. Castro-Montero, A., Jia, Z. and Shah, S.P. (1995), "Evaluation of damage in Brazilian test using holographic interferometry", ACI Mater. J., 92(3), 268-275.
  4. Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Trans. Nonferrous Met. Soc. China, 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
  5. Cui, M., Zhay, Y. and Ji, G. (2011), "Experimental study of rock breaking effect of steel particles", J. Hydrodyn, 23(2), 241-246. http://doi.org/10.1016/S1001-6058(10)60109-6.
  6. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  7. Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min. Sci., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002.
  8. Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78(15), 2633-2644. http://doi.org/10.1016/j.engfracmech.2011.06.022.
  9. Diederichs, M.S. (2007), "The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling", Can. Geotech. J., 44, 1082-1116. http://doi.org/10.1139/T07033.
  10. Diederichs, M.S. and Kaiser, P.K. (1999), "Tensile strength and abutment relaxation as failure control mechanics in underground excavations", Int. J. Rock Mech. Min. Sci., 36, 69-96. http://doi.org/10.1016/S0148-9062(98)00179-X.
  11. Diederichs, M.S. and Martin, C.D. (2010), "Measurement of spalling parameters from laboratory testing", ISRM International Symposium-EUROCK 2010, Lausanne, June.
  12. Erarslan, N. and Williams, D.J. (2012), "The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks", Int. J. Rock Mech. Min. Sci., 56, 15-26. https://doi.org/10.1016/j.ijrmms.2012.07.015.
  13. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001.
  14. Ghazvinian, A, Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2012), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8.
  15. Golewski, G.L. and Szostak, B. (2021), "Application of the CSH phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Mater., 14(21), 6514. https://doi.org/10.3390/ma14216514.
  16. Golewski., G.L. (2018), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
  17. Golewski., G.L. (2019), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Pr. Commun., 1(5), 33-44. https://doi.org/10.1002/mdp2.82.
  18. Golewski., G.L. (2021), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today: Proc., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031.
  19. Golewski., G.L. (2022), "Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of CSH phase", Struct. Eng. Mech., 82(4), 543-556. http://doi.org/10.12989/sem.2022.82.4.543.
  20. Gomez, J.T., Shukla, A. and Sharma, A. (2001), "Static and dynamic behavior of concrete and granite in tension with damage", Theor. Appl. Fract. Mech., 36(1), 37-49. http://doi.org/10.1016/S0167-8442(01)00054-4.
  21. Hoek, E. and Martin, C.D. (2014), "Fracture initiation and propagation in intact rock-A review", J. Rock Mech. Geotech. Eng., 6(4), 287-300. https://doi.org/10.1016/j.jrmge.2014.06.001.
  22. Ibrahim, B. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia Soc. Behav. Sci., 195, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317.
  23. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
  24. Kim, J.J. and Reda Taha, M. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 2014, Article ID 156926. https://doi.org/10.1155/2014/156926.
  25. Li, Y, Cai, W., Li, X., Zhu, W., Zhang, Q. and Wang, S. (2019), "Experimental and DEM analysis on secondary crack types of rock-like material containing multiple flaws under uniaxial compression", Appl. Sci., 9(9), 1749. https://doi.org/10.3390/app9091749.
  26. Li, Y., Wang, H., Cai, W., Li, S. and Zhang, Q, (2020), "Stability monitoring of surrounding rock mass on a forked tunnel using both strain gauges and FBG sensors", Measure., 153, 107449. https://doi.org/10.1016/j.tafmec.2020.102603.
  27. Li, Y., Zhou, H., Dong, Z., Zhu, W., Li, S. and Wang, S. (2018), "Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method", Geomech. Eng., 14(3), 271-281. http://doi.org/10.12989/gae.2018.14.3.271.
  28. Li, Y., Zhou, H., Zhang, L., Zhu, W., Li, S. and Liu, J. (2016), "Experimental and numerical investigations on mechanical property and reinforcement effect of bolted jointed rock mass", Constr. Build. Mater., 126, 843-856. https://doi.org/10.1016/j.conbuildmat.2016.09.100.
  29. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002.
  30. Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. http://doi.org/10.12989/cac.2013.12.3.285.
  31. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037.
  32. Pandit, G.S. (1970), "Concrete rings for determining tensile strength of concrete", ACI J., 67(4), 847-848.
  33. Patel, S. and Martin, C.D. (2018), "Application of digital image correlation technique for measurement of tensile elastic constants in Brazilian tests on a bi-modular crystalline rock", Geotech. Test. J., 41(4), 664-674. http://doi.org/10.1520/GTJ20170208.
  34. Patel, S. and Martin, C.D. (2018), "Application of flattened brazilian test to investigate rocks under confined extension", Rock Mech. Rock Eng., 51(12), 3719-3736. https://doi.org/10.1007/s00603-018-1559-1.
  35. Patel, S. and Martin, C.D. (2018), "Evaluation of tensile Young's modulus and Poisson's ratio of a bi-modular rock from the displacement measurements in a Brazilian test", Rock Mech. Rock Eng., 51(2), 361-373. https://doi.org/10.1007/s00603-017- 1345-5.
  36. Perras, M.A. and Diederichs, M.S. (2014), "A review of the tensile strength of rock: Concepts and testing", Geotech. Geolog. Eng., 32(2), 525-546. https://doi.org/10.1007/s10706-014-9732-0.
  37. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
  38. Potyondy, D.O. amd Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  39. Rafiei Renani, H. amd Martin, C.D. (2018), "Cohesion degradation and friction mobilization in brittle failure of rocks", Int. J. Rock Mech. Min. Sci., 106, 1-13. https://doi.org/10.1016/j.ijrmms.2018.04.003.
  40. Ramadoss, P. amd Nagamani, K. (2006), "Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods", Comput. Concrete, 3(6), 389-400. http://doi.org/10.12989/cac.2006.3.6.389.
  41. Roth, M.J. and Flores, O.G. (2010), "Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: An experimental, micromechanical and numerical study", Comput. Concrete, 7(2), 69-190. http://doi.org/10.12989/cac.2010.7.2.069.
  42. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. http://doi.org/10.1007/s00603-013-0450-3.
  43. Sarfarazi, V., Hamid, R.F., Haeri, H. and Wulf, S. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-286. http://doi.org/10.12989/acc.2015.3.4.269.
  44. Saridemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. http://doi.org/10.12989/cac.2016.17.4.489.
  45. Seedsman, R.W. (2013), "Practical strength criterion for coal mine roof support design in laminated soft rocks", Min. Technol., 122, 243-249. https://doi.org/10.1179/1743286313Y.0000000044.
  46. Shahsavar, S., Fakoor, M. and Berto, F. (2021), "Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path", Steel Compos. Struct., 39(6), 765-779. http://doi.org/10.12989/scs.2021.39.6.765.
  47. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034.
  48. Swaddiwughipong, S., Lu, H. and Wee, T. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cement Concrete Res., 33(12), 2077-2084. http://doi.org/10.1016/S0008-8846(03)00231-X.
  49. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 88-95. http://doi.org/10.1016/j.conbuildmat.2015.05.015.
  50. Tutmez, B. (2009), "Clustering-based identification for the prediction of splitting tensile strength of concrete", Comput. Concrete, 6(2), 155-165. http://doi.org/10.12989/cac.2009.6.2.155.
  51. Van Mier, J.G.M. and van Vliet, M.R.A. (2002), "Uniaxial tension test for the determination of fracture parameters of concrete: State of the art", Eng. Fract. Mech., 69(2), 235-247. http://doi.org/10.1016/S0013-7944(01)00087-X.
  52. Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29. https://doi.org/10.1016/j.engfracmech.2013.01.018.
  53. Wang, J., Li, S.C., Li, L.P., Zhu, W., Zhang, Q.Q. and Song, S.G. (2014), "Study on anchorage effect on fractured rock", Steel Compo. Struct., 17(6), 791-801. http://doi.org/10.12989/scs.2014.17.6.791.
  54. Wang, Q.Z. (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6), 1006-1011. http://doi.org/10.1016/j.ijrmms.2010.05.005.
  55. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. http://doi.org/10.1016/j.engfracmech.2011.06.004.
  56. Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001.
  57. Wang, X.H. and Liu, X.L. (2012), "Analysis of RC beam with unbonded or exposed tensile steel reinforcements and defective stirrup anchorages for shear strength", Comput. Concrete, 10(1), 59-78. http://doi.org/10.12989/cac.2012.10.1.059.
  58. Wang, Y., Feng, W. and Li, C.H, (2020b), "On anisotropic fracture and energy evolution of marble subjected to triaxial fatigue cyclic-confining pressure unloading conditions", Int. J. Fatig., 134(2), 105524. http://doi.org/10.1016/j.ijfatigue.2020.105524.
  59. Wang, Y., Li, C.H. and Han, J.Q. (2020a), "On the effect of stress amplitude on fracture and energy evolution of pre-flawed granite under uniaxial increasing-amplitude fatigue loads", Eng. Fract. Mech., 240(2), 107366. http://doi.org/10.1016/j.engfracmech.2020.107366.
  60. Wang, Y., Li, J., Zhu, C. and Mao, T. (2021), "Fatigue failure identification using deformation and energy rate for hole-fissure contained granite under freeze-thaw and variable-frequencyvariable-amplitude cyclic loads", Fatig. Fract. Eng. Mater. Struct., 45(1), 834-851. http://doi.org/10.1111/ffe.13639.
  61. Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z.
  62. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143. http://doi.org/10.12989/sem.2016.57.6.1143.
  63. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  64. Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  65. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://doi.org/10.12989/sem.2020.76.3.325.
  66. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.625.
  67. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  68. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  69. Yaylaci, M., Yayli, M., Yaylaci, E. U., Olmez, H., & Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  70. Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cement Concrete Res., 32(8), 1251-1257. https://doi.org/10.1016/S0008-8846(02)00768-8.
  71. Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. http://doi.org/10.12989/scs.2021.39.1.081.
  72. Zou, G.P., Xia, P.X., Shen, X.H. and Wang, P. (2016), "Investigation on the failure mechanism of steel-concrete steel composite beam", Steel Compos. Struct., 20(6), 1183-1191. https://doi.org/10.12989/scs.2016.20.6.1183.