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Abstract Isolation of the culture broth of a marine-derived

Acremonium sp. CNQ-049 guided by HPLC-UV yielded

compound 1 (3-phenethyl-2-phenylquinazolin-4(3H)-one), and its

inhibitory activities against monoamine oxidases (MAOs),

cholinesterases (ChEs), and β-secretase 1 (BACE1) were evaluated.

Compound 1 was an effective selective MAO-B inhibitor with an

IC50 value of 9.39 μM and a selectivity index (SI) value of 4.26

versus MAO-A. In addition, compound 1 showed a potent

selective butyrylcholinesterase (BChE) inhibition with an IC50

value of 7.99 μM and an SI value of 5.01 versus acetyl-

cholinesterase (AChE). However, compound 1 showed weak

inhibitions against MAO-A, AChE, and BACE1. The Ki value of

compound 1 for MAO-B was 5.22±1.73 μM with competitive

inhibition, and the Ki value of compound 1 for BChE was

3.00±1.81 μM with mixed-type inhibition. Inhibitions of MAO-B

and BChE by compound 1 were recovered by dialysis experiments.

These results suggest that compound 1 is a dual-functional

reversible inhibitor of MAO-B and BChE, that can be used as a

treatment agent for neurological disorders.

Keywords Acremonium sp. CNQ-049 · Butyrylcholinesterase ·

Dual-functional reversible inhibitor · Monoamine oxidase · 3-

Phenethyl-2-phenylquinazolin-4(3H)-one

Introduction

Alzheimer’s disease (AD) is one of the famous neurodegenerative

diseases and is known to cause dementia [1]. The typical

symptoms of AD are memory and cognitive declines [2]. The

main cause of AD is brain nerve apoptosis caused by accumulation

of beta-amyloid (Aβ), and there is also a decrease in the

concentration of neurotransmitters such as serotonin and dopamine

(DA) [3-5]. In this reason, inhibitors of beta-site amyloid

precursor protein-cleaving enzyme 1 (BACE1) involving in the

production of Aβ, and those of monoamine oxidase (MAO)

breaking down neurotransmitters are being developed [1,3,4,6,7].

In addition, a reduction of cholinergic receptor has been reported

in AD patient brains. Accordingly, cholinesterase (ChE) inhibitors

have been developed as AD treatment agents to increase the

concentration of choline receptors [8].

MAO exists in two isoforms such as MAO-A and MAO-B, in

the mitochondrial outer membrane [9]. It involved in catecholamine

and 5-hydroxytryptamine inactivation, and catalyzes oxidative

deamination of monoamines [6,10]. Therefore, MAO inhibitors

reduce AD symptoms by increasing dopaminergic transmission

and neurotransmitter synthesis factors or blocking degradation of

the neurotransmitters [7]. Typically, selective MAO inhibitors

such as selegiline, rasagiline, pargyline, and clorgyline are used

for AD treatment [11,12]. On the other hand, ChE contains two

types, namely, acetylcholinesterase (AChE) and butyrylcholinesterase

(BChE). Two types of ChEs have a common ability to hydrolyze

AChE, but differ in their selectivity. AChE specifically hydrolyzes

acetylcholine (ACh), and BChE non-specifically hydrolyzes ACh

and butyrylcholine (BCh) [13]. ACh is an important neurotransmitter

in the brain, which functions in central nervous system and the

peripheral nervous system, and regulates cognitive functions

through neurotransmission, especially memory and learning

[14,15]. ACh is synthesized in presynaptic neurons and released

into postsynaptic neurons [16]. Choline inhibitors developed for
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the treatment of AD include tacrine, donepezil, galantamine, and

rivastigmine, all approved by the FDA [17-20]. However, tacrine

has been reported to have a severe hepatotoxicity and is not used

currently [11]. Nevertheless, as an AD drug, ChEs inhibitors are

still valuable.

Recently, dual-target inhibitors have been developed to increase

the efficacy of AD treatment [21], including homoisoflavonoid

derivatives [22], donepezil-butylated hydroxytoluene hybrids [23],

coumarin-dithiocarbamate hybrids [24], alcohol-bearing dual

inhibitors [25], and chalcone oxime ethers [26]. Natural MAO and

ChE inhibitors from microbial sources have been isolated and

investigated such as 5-hydroxy-2-methyl-chroman-4-one (HMC)

from an endogenous lichen fungus (ELF) Daldinia fissa [27],

alternariol, 5'-hydroxy-alternariol, and mycoepoxydiene from an

ELF Diaporthe mahothocarpus [28], (S)-5-methylmellein (5MM)

from an ELF Rosellinia corticium [29], chromenone derivatives

from Streptomyces sp. [30], aplysinopsins from Aplysinopsis sp.

[31], piloquinones from Streptomyces sp. [32], and anithiactins

from Streptomyces sp. [33]. Especially, we have focused on

marine natural inhibitors [34]. In this study, we isolated and

identified one compound from a marine-derived Acremonium sp.

CNQ-049, and investigated its MAOs, ChEs, and BACE1

inhibitory activities, including evaluation of its dual-functional

inhibition.

Materials and Methods

General experimental

Low-resolution LC/MS measurements were performed using the

Agilent Technologies 1260 quadrupole (Agilent Technologies,

Santa Clara, CA, USA) and Waters Micromass-ZQ 2000 MS

system (Waters Corp, Milford, MA, USA) using a reversed-phase

column (Phenomenex Luna C-18 (2), 50×4.6 mm, 5 µm, 100Å) at

a flow rate of 1.0 mL/min at the National Research Facilities and

Equipment Center (NanoBioEnergy Materials Center) at Ewha

Womans University. 1H and 2D NMR spectra were recorded at

500 MHz in CD3OD using a solvent signal as an internal standard

on Varian Inova spectrometers (Bruker, Billerica, MA, USA). 13C

NMR spectra were acquired at 125 MHz on the Varian Inova

spectrometer. Medium-pressure liquid chromatography (MPLC)

was performed using a Biotage Isolera One System (SE-751 03

Uppsala, Sweden) equipped with a Biotage SNAP KP-Sil column,

by a step gradient solvent of dichloromethane (DCM) and methanol

(MeOH). The fractions obtained from MPLC were subsequently

purified by high-performance liquid chromatography (HPLC)

using a reversed-phase Phenomenex Luna column (C-18 (2),

250×10 mm, 5 μm, 100Å).

Fermentation, extraction, and isolation

The strain CNQ-049 was cultured in 80 L of 2.5 L Ultra Yield

Flasks, with each flask containing 1 L of SYP SW medium (10 g/

L of soluble starch, 2 g/L of yeast extract, 4 g/L of peptone, and

139 g/L of sea salt in 1 L of distilled water) at 27 oC with shaking

at 120 rpm for 7 days. The culture medium was extracted with

ethyl acetate (EtOAc), yielding a total of 80 L of extract, which

was concentrated in a rotary vacuum evaporator to yield 5 g of

crude extract. The crude extract was subjected to separation on a

silica gel MPLC column (Biotage® SNAP Cartridge, KP-SIL)

using a step gradient of 0 to 100% MeOH in DCM, resulting in

the isolation of ten fractions. The second fraction, Q049-2 (1.8 g),

was re-separated into six subfractions by C-18 reversed-phase

column chromatography using 60% aqueous acetonitrile (CH3CN).

The fifth subfraction, Q049-2-E (179 mg), was further purified by

reversed-phase HPLC (Phenomenex Luna C-18 (2), 250×100

mm, 2.0 mL/min, 5 μm, 100Å, UV=210 nm) using 75% aqueous

CH3CN, yielding 1.5 mg of compound 1.

Compound 1: 1H (500 MHz, CD3OD); dH 8.33 (dd, J =8.1, 1.8

Hz, 1H), 7.86 (m, 1H), 7.68 (m, 1H), 7.62-7.53 (m, 4H), 7.42-7.40

(m, 2H), 7.17-7.15 (m, 3H), 6.84-6.82 (m, 2H), 4.20 (t, J =8.0 Hz,

2H) and 2.91 (t, J = 8.4 Hz, 2H), 13C NMR (125 MHz, CD3OD);

dC 161.8, 157.0, 146.6, 137.6, 134.51, 134.50, 129.7, 128.3, 128.2,

127.7, 127.0, 126.2, 126.1, 120.4, 47.3, and 33.7, LR-ESI-MS m/

z =327.0 [M+H]+.

Chemicals

AChE from Electrophorus (electric eel), acetylthiocholine iodide

(ATCI), benzylamine, BChE from equine serum, butyrylthiocholine

iodide (BTCI), BACE1 inhibitor IV, BACE1 activity detection kit

(fluorescent), clorgyline, dimethyl sulfoxide (DMSO), donepezil,

kynuramine, pargyline, quercetin, recombinant human MAO-A

and MAO-B, safinamide, toloxatone, 5,5'-dithiobis(2-nitrobenzoic

acid) (DTNB) were purchased from Sigma-Aldrich (St. Louis,

MO, USA). Sodium phosphates (mono- and di-basic anhydrous)

were purchased from Daejung (Siheung, Korea). DiaEasyTM

dialyzer (6-8 kDa) was obtained from BioVision (St. Grove, MA,

USA).

Inhibition studies of MAO-A and MAO-B

The MAO activities were determined using 0.06 mM kynuramine

for MAO-A and 0.3 mM benzylamine for MAO-B as substrates

[35]. The ChE activities were determined using 0.5 mM substrates

(ATCI for AChE and BTCI for BChE), and 0.5 mM DTNB as a

color reagent [36]. Sample absorbance was measured by continuous

assay method [35,37] with slightly modification [38,39]. Inhibitions

of compound were compared to the reference inhibitors of MAOs

(toloxatone and clorgyline for MAO-A, safinamide and pargyline

for MAO-B), ChEs (donepezil), and BACE1 (quercetin and

BACE1 inhibitor IV) [35-37,40].

Enzyme kinetics

After first determination at 10 μM, the IC50 values of the

compounds were calculated by using GraphPad Prism software 5

[41]. The selectivity index (SI) values of compounds were
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calculated by (IC50 of MAO-A or AChE)/(IC50 of MAO-B or

BChE) [42]. The inhibition types of compound 1 for MAO-B and

BChE were determined at five different substrate concentrations

[35,43], and three inhibitor concentrations of ~0.5, 1.0, and 2.0

times of its IC50 values [41]. The inhibition patterns and Ki values

were determined by comparing the Lineweaver-Burk plots and

their secondary plots, respectively [38].

Reversibility studies

Compound 1 was incubated with MAO-B or BChE at a

concentration of 2.0 times IC50 value for 30 min before the

measurement and the reversibilities were evaluated and patterns

were determined by comparing undialyzed (AU) and dialyzed

(AD) values, as previously described [35,43]. Restored enzyme

activities of compounds were compared to those of the reference

compounds, such as safinamide, pargyline (reversible and

irreversible inhibitor of MAO-B, respectively), and donepezil

(reversible inhibitor of BChE).

Results and Discussion

Identification of compound 1

Compound 1 was isolated as a white powder with a pseudo-

molecular ion peak at the m/z =327.0 [M+H]+ in LRMS

spectroscopic data. The 1H NMR spectrum of compound 1

displayed fourteen aromatic protons at dH 8.33 (dd, J = 8.1, 1.8

Hz, 1H), 7.86 (m, 1H), 7.68 (m, 1H), 7.62-7.53 (m, 4H), 7.42-7.40

(m, 2H), 7.17-7.15 (m, 3H), and 6.84-6.82 (m, 2H), and two

methylene groups at dH 4.20 (t, J = 8.0 Hz, 2H) and 2.91 (t, J = 8.4

Hz, 2H). Moreover, the 13C NMR spectrum of 1 displayed sixteen

carbon signals at dC 161.8, 157.0, 146.6, 137.6, 134.51, 134.50,

129.7, 128.3, 128.2, 127.7, 127.0, 126.2, 126.1, 120.4, 47.3, and

33.7. The spectra were provided in Supplementary (Fig. S1~S6).

Finally, compound 1 was identified as 3-phenethyl-2-phenyl-

quinazolin-4(3H)-one based on a comparison of its NMR data to

the literature [44], as shown in Fig. 1. Compound 1 was a

quinazoline derivative and various biological activities of diverse

quinazoline compounds have been reported including anti-cancer,

anti-inflammatory, anti-viral, and anti-bacterial activities [45].

However, little is known about their potential as Alzheimer’s

disease (AD) therapeutics. Thus, the bioactivity of compound 1

was investigated on the molecular targets of the neurodegenerative

diseases such as MAOs, ChEs, and BACE1.

Inhibition studies of MAO-A and MAO-B

Compound 1 was analyzed for inhibitory activities against MAOs,

ChEs, and BACE1. Compound 1 effectively inhibited MAO-B

and BChE with the residual activities of 47.92% and 39.02%,

respectively, at 10 μM. Compound 1 showed MAO-B inhibition

with an IC50 value of 9.39 μM, and the SI value was >4.26,

indicating that compound 1 was a selective MAO-B inhibitor

(Table 1). On the other hand, compound 1 showed potent BChE

inhibition with an IC50 value of 7.99 μM, and SI value was >5.01,

indicating compound 1 was a selective BChE inhibitor (Table 1).

These results showed that compound 1 was a dual-functional

inhibitor against MAO-B and BChE. Dual-functional inhibitor is

an inhibitor with two or more therapeutic effects and higher

therapeutic ability can be expected than single functional inhibitor

[21]. Recently, various dual-functional inhibitors have been

developed and reported, such as dual-functional inhibitors for

Fig. 1 Chemical structures of 3-phenethyl-2-phenylquinazolin-4(3H)-one

(1)

Table 1 Inhibitions of MAOs, ChEs, and BACE1 by compound 1a

Compound
Residual activity at 10 µM (%) IC50 (µM)

SIb
IC50 (µM)

SIc

MAO-A MAO-B AChE BChE BACE1 MAO-A MAO-B AChE BChE

1 96.04±1.40 47.92±0.56 106.49±4.59 39.02±2.68 109.36±14.46 >40 9.39±0.19 >4.26 >40 7.99±0.49 >5.01

Toloxatone 01.08±0.025

Clorgyline 0.007±0.001

Safinamide 0.105±0.033

Pargyline 0.140±0.006

Donepezil 0.001±0.002 0.180±0.004

Quercetin 013.4±0.035d

BACE1I IV* 0.440±0.064d

aResults are the means ± standard errors of duplicate or triplicate experiments
bSelectivity index (SI) values are expressed for MAO-B as compared with MAO-A
cSI values are expressed for BChE as compared with AChE
dThese are IC50 values of BACE1 reference compounds 
*BACE1 inhibitor IV
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MAO, ChE, BACE1, antioxidant, and carbonic anhydrase VII

[46-51]. However, compound 1 showed weak inhibitory activity

against BACE1 as well as MAO-A and AChE. Compared with

other natural inhibitors, MAO-B inhibitory activity of compound

1 was similar or higher than 5MM (IC50=9.15 μM) [29], alternariol

(AT, IC50=20.7 μM) [28], glycyrol (GC, IC50=29.48 μM) [40] and

chromenone derivative 1 (IC50=27.0 μM) [30], but lower than

chromenone derivative 2 (IC50=3.42 μM) [30], and liquiritigenin

(IC50=0.098 μM) [40]. In addition, BChE inhibitory activity of

compound 1 was slightly lower than GC (IC50=7.22 μM) [40].

Reversibility studies

The reversibility tests of compound 1 for MAO-B and BChE were

performed by the dialysis method with slight modification

[37,52]. In this study, concentrations of compound 1 were ~2.0-

times of its IC50 concentrations, i.e., 20 μM for MAO-B and 16

μM for BChE. The recovery patterns were compared using the

activities of AU and AD relative activities. MAO-B inhibition by

compound 1 was recovered from 36.79 to 77.93% (Fig. 2). This

recovery value of the compound 1 was similar to that of

safinamide (from 31.89 to 86.70%), a reversible MAO-B inhibitor,

and it can be distinguished from that of pargyline (from 36.11 to

24.42%), an irreversible MAO-B inhibitor. On the other hand,

BChE inhibition by compound 1 was recovered from 38.79 to

77.66% (Fig. 3). The recovery value of compound 1 was similar

to that of donepezil, a reversible inhibitor of BChE (from 39.72 to

83.51%). These results indicated that compound 1 was a

reversible inhibitor of MAO-B and BChE.

Enzyme kinetics

Enzyme kinetics of MAO-B and BChE were analyzed at five

substrate concentrations (benzylamine and BTCI, respectively)

and at three inhibitor concentrations. In Lineweaver-Burk plot,

compound 1 appeared to be a competitive MAO-B inhibitor (Fig.

4A), and secondary plot showed that the Ki value was 5.22 ± 1.73

μM (Fig. 4B). On the other hand, compound 1 showed a mixed-

type BChE inhibition (Fig. 5A), and secondary plot showed that

the Ki value was 3.00±1.81 μM (Fig. 5B). In previous studies,

most of MAO inhibitors were reported as competitive inhibitors

[27-30,32,33], and ChE inhibitors were reported as mixed-type

inhibitors [22-24]. These results suggested that compound 1 was

a competitive MAO-B inhibitor and a mixed-type BChE inhibitor.

In this study, compound 1 was isolated from a marine-derived

Acremonium sp. CNQ-049. Compound 1 showed effective MAO-

B and BChE inhibitions with reversible competitive and mix-type

Fig. 2 Recovery of MAO-B inhibition by compound 1 using dialysis

experiments. The concentration of inhibitor was used at ~2×IC50.

Enzyme was preincubated with inhibitor for 30 min before the

measurement and residual activity was measured after dialysis

Fig. 4 Lineweaver–Burk plots for MAO-B inhibition by compound 1

(A), and their respective secondary plots (B) of the slopes vs. inhibitor

concentrations

Fig. 5 Lineweaver–Burk plots for BChE inhibition by compound 1 (A),

and their respective secondary plots (B) of the slopes vs. inhibitor

concentrations

Fig. 3 Recovery of BChE inhibition by compound 1 using dialysis

experiments. The experiment was performed as mentioned in Fig. 2,

except BChE instead of MAO-B
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patterns, respectively. These results suggest that compound 1 is a

potential dual-target inhibitor and can be used as a natural

candidate for neurodegenerative disease treatment.
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