DOI QR코드

DOI QR Code

Study on skin anti-inflammatory activity of fig (Ficus carica L.) fruit extract fractions

무화과(Ficus carica L.) 열매 추출 분획의 피부 항염증 활성 연구

  • Received : 2023.09.16
  • Accepted : 2023.10.13
  • Published : 2023.12.31

Abstract

Figs has known to have antioxidant, whitening, anti-inflammatory, and antibacterial effects in their leaves, roots, stems, latex, and fruits. In order to develop cosmetic materials based on natural products, we have studied on the skin activity of the ficin in latex as well as the whitening function of the fruit extract with 70% ethanol, and used it as a raw material for released cosmetic product. However, there is little research on the demand for the development of new eutectic solvent extraction methods and its ability to control skin inflammation and psoriasis regulation. Thus, in this study, we evaluated the effectiveness of fig fruit extracts and fractions using eutectic solvent extraction for skin inflammation control and psoriasis. First, fig fruits were extracted under optimal eutectic solvent conditions and fractionated with n-hexane, dichloromethane, ethyl acetate, and butanol. First, the antioxidant activity and inhibition of nitric oxide (NO) production were confirmed in mouse macrophage RAW264.7 cells. In addition, as a result of observing the mRNA expression through RT-PCR, pro-inflammatory cytokines such as TNF-α, IL1α, and IL-1β were suppressed significantly in the hexane, dichloromethane, and ethyl acetate fractions. In addition, it was confirmed in TNF-α stimulated HaCaT keratinocyte model. Finally, chemokine CC motif ligand 20 (CCL20), marker gene of human psoriasis skin disease, was significantly suppressed in the hexane, dichloromethane, and ethyl acetate fractions. These results suggested its anti-inflammatory and skin soothing effect and the possibility of development as an excellent skin soothing natural cosmetic material in the future through future clinical trials.

무화과는 잎, 뿌리, 줄기, 라텍스 외에 열매 자체에서도 각각 항산화, 미백, 항염증, 항균 효능이 보고된다. 본 연구팀에서는 천연물 기반 화장품 소재 개발을 위해 무화과 열매 l atex에 존재하는 ficin 효소의 피부 활성 뿐만 아니라 열매를 70% 에탄올로 추출한 추출물의 미백 기능에 대해 연구 결과를 도출하여 화장품 원료로 직접 사용하고있다. 그러나 새로운 공융용매 추출법 개발 수요와 이를 활용한 피부 염증 완화 및 건선 조절기능에 대한 연구는 거의 없다. 따라서 본 연구에서는 공융용매 추출법을 적용한 무화과 열매 추출 및 분획물들에 피부 염증 조절 및 건선에 대한 유효성 평가를 수행하였다. 먼저, 무화과 열매를 최적의 공융용매 조건으로 추출한 후 n-hexane, dichloromethane, ethyl acetate. butanol로 분획한 분획물의 피부염증 조절 기능을 비교하였다. 먼저, 분획물의 항산화 활성과 RAW264.7 세포주에서 nitric oxide 생성 억제를 확인하였다. 또한 RT-PCR을 이용해 전염증성 사이토카인 mRNA 발현 조절을 관찰한 결과, 여러 분획물 중 hexane, dichloromethane, ethyl acetate와 같은 비극성 용매에서 TNF-α, IL-1α, IL-1β 등 염증성 사이토카인 mRNA 발현이 억제되었다. 뿐만 아니라 HaCaT 각질형성세포 모델에서 TNF-α 로 염증반응을 유도한 후 분획물의 항염증 활성을 비교한 결과 hexane, dichloromethane, ethyl acetate 분획에서 높은 활성을 확인하였다. 마지막으로 in vitro 인간 건선 세포모델에서 chemokine CC motif ligand 20(CCL20) 발현을 확인한 결과 유의성 있게 mRNA 발현 이 억제되었다. 따라서, 공융용매 추출 후 무화과 열매 분획물 중 hexane, dichloromethane, ethyl acetate 분획에서 높은 항염증 활성 및 CCL20 케모카인 조절 기능이 확인되었다. 이런 결과들은 무화과 열매 추출물의 항염증 활성과 함께 인체적용시험을 통해 피부진정 효과가 검증된다면 향후 뛰어난 피부 진정 천연 화장품 소재로 개발될 가능성이 높다고 사료된다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-001). 또한 항산화 및 폴리페놀 함량 분석등 배경 실험에 도움을 준 정희수, 이정현, 한예주 학생에게 감사함을 전합니다.

References

  1. Chukwuebuka E, Jonathan CI, Toske lK, Minakshi M, Hameed S, GM Narasimha R, Laurence JFJG, Habibu T (2018) Phytochemistry. In: Chukwuebuka E Introduction to phytochemistry, 1st Edition, Apple Academic Press, New York, pp 34
  2. Lattanzio V, Lattanzino VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research 661: 23-67
  3. Ramawat KG, Merillon JM (2013) Natural products. In: Lattanzio V Phenolic Compounds: Introduction. Springer-Verlag, Berlin Heidelberg, pp 1543-1580
  4. Choi DH, Hwang HS (2019) Anti-inflammation activity of brazilin in TNF-α induced human psoriasis dermatitis skin model. Appl Biol Chem 62: 46. doi: 10.1186/s13765-019-0455-z
  5. Aburjai T, Natsheh, FM (2003) Plants used in cosmetics. Phytother Res 17: 987-1000. doi: 10.1002/ptr.1363
  6. Ortwin B (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19: 797-841. doi: 10.1016/0079-6700(94)90033-7
  7. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13: 105-113. doi: 10.1002/pca.631
  8. Zheng L, Kathryn HS, Geoffrey WS (2016) The use of environmentally sustainable bio-derived solvents in solvent extraction applications-A review, Chin J Chem Eng 24: 215-220. doi: 10.1016/j.cjche.2015.07.021
  9. Zhong Z, Li G (2017) Current trends in sample preparation for cosmetic analysis. J Sep Sci 40: 152-169. doi: 10.1002/jssc.201600367
  10. Son SH, Lee SH (2022) Storage stability of spirulina extract extracted with natural eutectic solvent. J Kor Soc Cosmetol 28: 107-116
  11. Qinghua Z, Karine DOV, Sebastien R, Francois J (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41: 7108-7146
  12. Sin JB, Choi WY, Kang DH, Lee HY (2014) Comparison of anti-inflammatory activity of spirulina maxima extract by ultrasonication and water extraction process. J Korean Soc of Food Sci Nutr 43: 1852-1857. doi: 10.3746/jkfn.2014.43.12.1852
  13. Anat S, Sara G, Zeev Y, Shlomo G, Margalit B, Hugo EG, Arie A, Zohar K, Moshe AF (2006) Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem 54: 7717-7723. doi: 10.1021/jf060497h
  14. Shamkant BB, Vainav VP, Atmaram HB, Raghunath T M (2014) Traditional uses, phytochemistry and pharmacology of ficus carica: A review. Pharm Biol 52(11): 1487-1503. doi: 10.3109/13880209.2014.892515
  15. Rezagholizadeh L, Aghamohammadian M, Oloumi M, Banaei S, Mazani M, Ojarudi M (2022) Inhibitory effects of ficus carica and olea europaea on pro-inflammatory cytokines: A review. Iran J Basic Med Sci 25: 268-275. doi: 10.22038/IJBMS.2022.60954.13494
  16. Senem K, Esra C (2015) Polyphenol content in figs (Ficus carica L.): effect of sun-drying. Int J Food Prop 18: 521-535
  17. Olga SA, Yiannis S, Georgia G, Nikolaos ST, Athanasios SS (2019) Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res Int 119: 244-267. doi: 10.1016/j.foodres.2019.01.055
  18. Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Food Res Int 56: 683-687. doi: 10.1016/S0014-827X(01)01111-9
  19. Chow JM, Shen SC, Steven K. Huan, Lin HY, Chen YC (2005) Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol 69: 1839-1851. doi: 10.1016/j.bcp.2005.03.017
  20. Karki R, Park CH, Kim DW (2013) Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J Integr Med 11: 246-252. doi: 10.3736/jintegrmed2013036
  21. Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT 41: 1060-1066. doi: 10.1016/j.lwt.2007.06.010
  22. Sun L, Guo Y, Zhang Y, Zhuang Y (2017) Antioxidant and antityrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 Mouse melanoma cells. Front Pharmacol 8. doi: 10.3389/fphar.2017.00104
  23. Choi JK, Kim SH. (2013) Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp Biol Med (Maywood) 238: 410-417. doi: 10.1177/1535370213477975
  24. Cho UM, Choi DH, Yoo DS, Park SJ, Hwang HS (2019) Inhibitory effect of ficin derived from fig latex on inflammation and melanin production in skin cells. Biotechnol Bioproc E 24; 288-297. doi: 10.1007/s12257-019-0010-0
  25. Nancy W, Sarah M (2013) Psoriasis. Am Fam Physician 87: 626-633
  26. Youssef AE, Michael SG, Michael T, Tessa JB, Edward AF, Kristen LS, Andrea LN, Jose US, James K, Jeffrey SB (2021) CCL20 in psoriasis: A potential biomarker of disease severity, inflammation, and impaired vascular health. J Am Acad Dermatol 84: 913-920. doi: 10.1016/j.jaad.2020.10.094
  27. Erin GH, Changsheng G, Heather R, Joseph VL, Stephen EK, Iliyana S, David P, Erin F, Mihail I, Andrew B (2009) Th17 Cytokines Stimulate CCL20 Expression in Keratinocytes In Vitro and In Vivo: Implications for Psoriasis Pathogenesis. J Invest Dermatol 129: 2175-2183. doi: 10.1038/jid.2009.65