DOI QR코드

DOI QR Code

Flavonol glycosides from the flowers of Carthamus tinctorius and their anti-diabetic activity

잇꽃(Carthamus tinctorius)으로부터 Flavonol glycoside 화합물들의 분리 및 항당뇨 효과

  • Bo-Ram Choi (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Hyoung-Geun Kim (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Yoon Hee Nam (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Dahye Yoon (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Woo Cheol Shin (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jin-Kyu Jang (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Yunji Lee (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Tong Ho Kang (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Nam-In Baek (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Dae Young Lee (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
  • Received : 2023.11.26
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

The flowers of Carthamus tinctorius (Safflower) were extracted with 80% aqueous methanol (CTex) and the concentrates were partitioned into EtOAc (CTE), n-BuOH (CTB), and H2O (CTW) fractions. Repeated silica gel (SiO2) and octadecyl silica gel column chromatographies for the EtOAc and n-BuOH fractions led to isolation of four flavonol glycosides. Nuclear magnetic resornance, infrarad spectroscopy, and mass spectroscopy revealed the chemical structure of the isolated compounds, astragalin (1), isoquercetin (2), nicotiflorin (3), and rutin (4). Quantitative analysis of four isolated compounds in CTex was performed by HPLC. CTex was found to contain 1 at 0.107, 2 at 0.367, 3 at 6.752, and 4 at 0.991 mg/g, respectively. Through this study, an experiment was conducted to evaluate the protective effect on pancreatic islets of the extract, solvent fractions, and all isolated compounds using a zebrafish larvae damaged by alloxan. Pancreatic islet size treated with EtOAc (CTE), n-BuOH (CTB), and H2O (CTW) fractions and compounds 1-4 significantly increased compared to the alloxan-induced group. These results indicate that C. tinctorius flowers and its isolated compounds are used as potential anti-diabetic agents.

잇꽃을 80% MeOH 수용액으로 추출하고, 얻어진 추출물을 EtOAc, n-BuOH 및 물로 용매 분획 하였다. 이 중 n-BuOH 분획으로부터 silica gel (SiO2), octadecyl silica gel (ODS) column chromatography, 및 Prep-LC로 정제하여 4종의 화합물을 분리하였다. Nuclear magnetic resornance, mass spectroscopy 및 infrarad spectroscopy 등의 스펙트럼 데이터를 통해 화합물의 화학구조를 astragalin (1), isoquercetin (2), nicotiflorin (3), 그리고 rutin (4) 로 동정하였다. 본 연구를 통해 잇꽃 추출물, 용매 분획물 및 모든 분리 화합물의 alloxan에 의해 손상된 zebrafish 유충 췌도 보호 효과를 평가하기 위한 실험을 수행하였다. EtOAc (CTE), n-BuOH (CTB) 및 H2O (CTW) 분획 모두 통계 유의적으로 우수한 항당뇨 효능을 확인하였으며, 분리된 화합물 1-4로 처리된 췌도 크기는 알록산 유도군 대비 각각 87.0, 88.5, 88.7, 및 89.3% 로 유의적으로 증가했다. 분리된 4종의 화합물 중 nicotiflorin은 6.752 mg/추출물(g)으로 높은 함량을 나타내었다. 이 결과를 통해 잇꽃 유래 화합물은 항당뇨 소재의 기능 지표성분으로서 활용 가능성을 확인하였다.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 공동연구사업(RS-2019-RD008923)의 지원에 의해 이루어진 것입니다. 지원에 감사드립니다

References

  1. Baek NI, Kim YH, Ahn EM, Bang MH, Nam JY, Kwon BM (1998) Isolation of biologically active compounds from the flower petals of Carthamus tinctorius L. J Korean Soc Agri Chem Biotechnol 41: 197-200 
  2. Park YH, Lee CS (2011) Efficacy of Safflower on the acne skin and its application for facial cleansing biomedical material. J Korean Chem Soc 55: 400-404. doi: 10.5012/jkcs.2011.55.3.400 
  3. Kim JH, Kim JK, Kang WW, Ha YS, Choi SW, Moon KD (2003) Chemical compositions and DPPH radical scavenger activity in different section of safflower. J Korean Soc Food Sci Nutr 32: 733-738. doi: 10.3746/jkfn.2003.32.5.733 
  4. Xu S, Qiu S, Zhang S (1984) Studies on the antiinflammatory principles in Carthamus tinctorius. Zhongyao Tongbao 9: 31-32 
  5. Kim EO, Oh JH, Lee SK, Lee JY, Choi SW (2007) Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci Biotechnol 16: 71-77 
  6. Paramesha M, Ramesh CK, Krishna V, Kumar YSR, Parvathi KMM (2011) Hepatoprotective and in vitro antioxidant effect of Carthamus tinctorius L, var Annigeri-2-, an oil-yielding crop, against CCl4-induced liver injury in rats. Pharmacog Mag 7: 289-297. doi: 10.4103/0973-1296.90406 
  7. Zhou FR, Zhao MB, Tu PF (2009) Simultaneous determination of four nucleosides in Carthamus tinctorius L. and safflower injection using highperformance liquid chromatography. J Chin Pharm Sci 18: 326-330 
  8. Li L, Liu J, Li X, Guo Y, Fan Y, Shu H, Wu G, Peng C, Xiong L (2022) Sesquiterpenoids from the florets of Carthamus tinctorius (Safflower) and their anti-atherosclerotic activity. Nutrients 14: 5348. doi: 10.3390/nu14245348 
  9. Baek SC, Yi SA, Lee BS, Yu JS, Kim JC, Pang C, Jang TS, Lee J, Kim KH (2021) Anti-adipogenic polyacetylene glycosides from the florets of safflower (Carthamus tinctorius). Biomedicines 9: 91. doi: doi.org/10.3390/biomedicines9010091 
  10. Wu SH, Zheng CP, Chen SY, Cai XP, Shi YJ, Liu Z, Li ZY (2014) Anti-thrombotic effect of Carthamus tinctorius Linn extracts in rats. Trop J Pharm Res 13: 1637-1642. doi: 10.4314/tjpr.v13i10.10 
  11. Zhang LL, Tian K, Tang ZH, Chen XJ, BianZX, Wang YT, Lu JJ (2016) Phytochemistry and pharmacology of Carthamus tinctorius L. Am J Chinese Med 44: 197-226. doi: 10.1142/S0192415X16500130 
  12. Lee YG, Lee J, Lee NY, Kim NK, Jung DW, Wang W, Kim Y, Kim HG, Nguyen TN, Park H, Baek NI (2017) Evaluation for the flowers of compositae plants as whitening cosmetics functionality. J Appl Biol Chem 60: 511. doi: 10.3839/jabc.2017.002 
  13. Ko JH, Nam YH, Joo SW, Kim HG, Lee YG, Kang TH, Baek NI (2018) Flavonoid 8-O-Glucuronides from the Aerial Parts of Malva verticillata and Their Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish. Molecules 23: 833-847. doi: 10.3390/molecules23040833 
  14. Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299: 125124. doi: 10.1016/j.foodchem.2019.125124 
  15. Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H (2014) Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol 151: 944-950. doi: 10.1016/j.jep.2013.12.003 
  16. Li HX, Han SY, Wang XW, Ma X, Zhang K, Wang L, Ma ZZ, Tu PF (2009) Effect of the carthamins yellow from Carthamus tinctorius L. on hemorheological disorders of blood stasis in rats. Food Chem Toxicol 47: 1797-1802. doi: 10.1016/j.fct.2009.04.026 
  17. Kim HG, Jung YS, Oh SM, Oh HJ, Ko JH, Kim DO, Kang SC, Lee YG, Lee DY, Baek NI (2020) Coreolanceolins A-E, New Flavanones from the Flowers of Coreopsis lanceolata and Their Antioxidative and Anti-inflammatory Effects. Antioxidants 9: 539-555. doi: 10.3390/antiox9060539 
  18. Kim HG, Nam YH, Jung YS, Oh SM, Nguyen TN, Lee MH, Kim DO, Kang TH, Lee DY, Baek NI (2021) Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules 26: 6098. doi: 10.3390/molecules26206098 
  19. Pei J, Dong P, Wu T, Zhao L, Fang X, Cao F, Tang F, Yue Y (2016) Metabolic engineering of Escherichia coli for astragalin biosynthesis. J Agri Food Chem 64: 7966-7972. doi: 10.1021/acs.jafc.6b03447 
  20. Kato K, Ninomiya M, Tanaka K, Koketsu M (2016) Effects of functional groups and sugar composition of quercetin derivatives on their radical scavenging properties. J Nat Prod 79: 1808-1814. doi: 10.1021/acs.jnatprod.6b00274 
  21. Chaurasia N, Wichtl M (1987) Flavonol glycosides from Urtica dioica. Planta Med 53: 432-434 
  22. Beck MA, Haberlein H (1998) Flavonol glycosides from Eschscholtzia californica. Phytochem 50: 329-332. doi: 10.1016/S0031-9422(98)00503-2 
  23. Seo KH, Nam YH, Kim YE, Hong EK, Hong BN, Kang TH, Baek NI (2015) Recovery effect of flavonoids from Morus alba fruits on alloxan-induced pancreatic islet in Zebrafish (Dinio rerio). J Appl Biol Chem 58: 51-54. doi: 10.3839/jabc.2015.009 
  24. Liao H, Banbury L, Liang H, Wang X, Lu X, Hu L, Wu J (2014) Effect of Honghua (Flos Carthami) on nitric oxide production in RAW 264.7 cells and α-glucosidase activity. J Tradit Chin Med 34: 362-368. doi: 10.1016/S0254-6272(14)60103-5