DOI QR코드

DOI QR Code

Growth of Gallium Oxide Thin Film on c-, a-, m-, r-Plane Sapphire Substrates Using Mist Chemical Vapor Deposition System

미스트 화학기상증착법을 이용한 c면, a면, m면, r면 사파이어 기판 위의 산화갈륨 박막 성장 연구

  • Gi-Ryeo, Seong (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Seong-Ho, Cho (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kyoung-Ho, Kim (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun-Ji, Shin (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Seong-Min, Jeong (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Tae-Gyu, Kim (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Si-Young, Bae (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 성기려 (한국세라믹기술원 반도체소재센터) ;
  • 조성호 (한국세라믹기술원 반도체소재센터) ;
  • 김경호 (한국세라믹기술원 반도체소재센터) ;
  • 신윤지 (한국세라믹기술원 반도체소재센터) ;
  • 정성민 (한국세라믹기술원 반도체소재센터) ;
  • 김태규 (부산대학교 나노메카트로닉스공학과 ) ;
  • 배시영 (한국세라믹기술원 반도체소재센터)
  • Received : 2022.11.07
  • Accepted : 2022.11.30
  • Published : 2023.01.01

Abstract

Gallium oxide (Ga2O3) thin films were grown on c-, a-, m-, r-plane sapphire substrates using a mist chemical vapor deposition system. Various growth temperature range of 400~600℃ was applied for Ga2O3 thin film deposition. Then, several structural properties were characterized such as film thickness, crystal phase, lattice orientation, surface roughness, and optical bandgap. Under the certain growth temperature of 500℃, all grown Ga2O3 featured rhombohedral crystal structures and well-aligned preferred orientation to sapphire substrate. The films grown on c-and r-plane sapphire substrates, showed low surface roughness and large optical bandgap compared to those on a-and m-plane substrates. Therefore, various sapphire orientation can be potentially applicable for future Ga2O3-based electronics applications.

Keywords

Acknowledgement

본 연구는 세라믹전략기술개발사업(KPP22013)의 지원을 받아 수행되었습니다.

References

  1. M. Higashiwaki, k. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi A, 211, 21 (2014). [DOI: https://doi.org/10.1002/pssa.201330197] 
  2. D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., 47, 7311 (2008). [DOI: https://iopscience.iop.org/1347-4065/47/9R/7311] 
  3. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys., 51, 020201 (2012). [DOI: https://doi.org/10.1143/JJAP.51.020201] 
  4. Y. Xu, C. Zhang, Y. Cheng, Z. Li, Y. Cheng, Q. Feng, D. Chen, J. Zhang, and Y. Hao, Materials, 12, 3670 (2019). [DOI: https://doi.org/10.3390/ma12223670] 
  5. R. Jinno, K. Kaneko, and S. Fujita, AIP Adv., 10, 115013 (2020). [DOI: https://doi.org/10.1063/5.0020464] 
  6. S. Rafique, L. Han, and H. Zhao, Phys. Status Solidi A, 213, 1002 (2016). [DOI: https://doi.org/10.1002/pssa.201532711] 
  7. K. Akaiwa, K. Ota, T. Sekiyama, T. Abe, T. Shinoe, and K. Ich ino, Phys. Status Solidi A, 217, 1900632 (2020). [DOI: https://doi.org/10.1002/pssa.201900632] 
  8. Daisuke Tahara, Hiroyuki Nishinaka, Shota Morimoto, and Mashahiro Yoshimoto, IMFEDK, 29-30 June (2017). [DOI: https://doi.org/10.1109/imfedk.2017.7996036] 
  9. T. Kawaharamura, Jpn. J. Appl. Phys., 53, 05FF08 (2014). [DOI: https://doi.org/10.7567/JJAP.53.05FF08] 
  10. Y. Xu, Z. An, L. Zhang, Q. Feng, J. Zhang, C. Zhang, and Y. Hao, Optical Materials Express, 8, 2941 (2018). [DOI: https://doi.org/10.1364/OME.8.002941] 
  11. Y. Arata, H. Nishinaka, D. Tahara, and M. Yoshimoto, CrystEngComm, 20, 6236 (2018). [DOI: https://doi.org/10.1039/c8ce011] 
  12. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett., 68, 643 (1996). [DOI: https://doi.org/10.1063/1.116495]