DOI QR코드

DOI QR Code

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Tuan Quoc Tran (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.05.05
  • Accepted : 2023.07.17
  • Published : 2023.11.25

Abstract

The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019M2D2A1A03058371). This work was partially supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (RS-2023-00241302).

References

  1. E. Fridman, E. Nikitin, A. Ponomarev, A. Di Nora, S. Kliem, K. Mikityuk, Extension of the DYN3D/ATHLET code system to SFR applications: models description and initial validation, Ann. Nucl. Energy 182 (2023), 109619.
  2. W.C. Dawn, S. Palmtag, A multiphysics simulation suite for liquid metal-cooled fast reactors, Ann. Nucl. Energy 159 (2021), 108213.
  3. B. Lindley, et al., Impact of thermal-hydraulic feedback and differential thermal expansion on European sodium-cooled fast reactor core power distribution, J. Nucl. Eng. Radiat. Sci. 9 (2023), 031301.
  4. M. Vazquez, H. Tsige-Tamirat, L. Ammirabile, F. Martin-Fuertes, Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes, Nucl. Eng. Des. 250 (2012) 403-411.
  5. C. Fang, et al., Neutronics and thermal-hydraulics coupling analysis for a small lead-based fast reactor based on the discrete ordinate nodal and parallel channel method, Front. Energy Res. 11 (2023), 1088718.
  6. T.D.C. Nguyen, D. Lee, Group constants generation by Monte Carlo code MCS for LWR analysis, Comput. Phys. Commun. 285 (2023), 108642.
  7. T.D.C. Nguyen, H. Lee, D. Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis, Nucl. Eng. Technol. 53 (2021) 2788-2802.
  8. J. Park, et al., RAST-K v2-three-dimensional nodal diffusion code for pressurized water reactor core analysis, Energies 13 (2020) 6324.
  9. T.Q. Tran, A. Cherezov, X. Du, D. Lee, Verification of a two-step code system MCS/RAST-F to fast reactor core analysis, Nucl. Eng. Technol. 54 (2022) 1789-1803.
  10. T.D.C. Nguyen, J.Y. Kim, J. Choe, I.C. Bang, D. Lee, Core design of 100MWe advanced nitride-fueled simplified liquid metal cooled fast reator, in: International Conference on Fast Reactors and Related Fuel Cycles: Sustainable Clean Energy for the Future (FR22), IAEA, Vienna, Austria, 2022. April 19-22 2022.
  11. H. Lee, et al., MCS-A Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020), 107276.
  12. V. Dos, H. Lee, J. Choe, H.C. Shin, H.S. Lee, D. Lee, Validation of UNIST MCS Monte Carlo code system for OPR-1000, in: Korean Nuclear Society Spring Meeting, Jeju, Korea, Korean Nuclear Society, May .
  13. V. Dos, H. Lee, X. Du, D. Lee, MCS analysis of 1000 MWth sodium-cooled fast reactor, in: International Congress on Advances in Nuclear Power Plants, France, Juan-Les-Pins, French Nuclear Society, May .
  14. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, Validation of UNIST Monte Carlo code MCS using VERA progression problems, Nucl. Eng. Technol. 52 (2020) 878-888.
  15. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, MCS/TH1D analysis of VERA whole-core multi-cycle depletion problems, Ann. Nucl. Energy 139 (2020), 107271.
  16. J. Choe, et al., Verification and validation of STREAM/RAST-K for PWR analysis, Nucl. Eng. Technol. 51 (2019) 356-368.
  17. E. Fridman, J. Leppanen, On the use of the Serpent Monte Carlo code for few-group cross section generation, Ann. Nucl. Energy 38 (2011) 1399-1405.
  18. E. Fridman, E. Shwageraus, Modeling of SFR cores with Serpent-DYN3D codes sequence, Ann. Nucl. Energy 53 (2013) 354-363.
  19. E. Nikitin, E. Fridman, K. Mikityuk, On the use of the SPH method in nodal diffusion analyses of SFR cores, Ann. Nucl. Energy 85 (2015) 544-551.
  20. H. Lee, Development of a New Monte Carlo Code for Large-Scale Power Reactor Analysis, Doctorate, Nuclear Engineering, Ulsan National Institute of Science and Technology, 2019.
  21. V. Bobkov, L. Fokin, E. Petrov, V. Popov, V. Rumiantsev, A. Savvatimsky, Thermophysical Properties of Materials for Nuclear Engineering: a Tutorial and Collection of Data, IAEA, Vienna, 2008.
  22. C. Fazio, et al., Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies-2015 Edition, Organisation for Economic Co-Operation and Development, 2015.
  23. Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors, Report of the collaborative project COOL of the international project on innovative nuclear reactors and fuel cycles (INPRO), IAEA (May 15 2013). IAEA-TECDOC-1696.
  24. G.J. Calamai, et al., Steady State Thermal and Hydraulic Characteristics of the FFTF Fuel Assemblies, June 1974. FRT-1582.
  25. S. Cevolani, E. Nava, K.W. Burn, Power Deposition Distribution In Liquid Lead Cooled Fission Reactors And Effects On The Reactor Thermal Behaviour, Ente Per Le Nuove Tecnologia 33, Italy, 2001, p. 16. ENEA-RT-ERG-01-04.
  26. H. Guo, X. Huo, K. Feng, H. Gu, Verification of OpenMC for fast reactor physics analysis with China experimental fast reactor start-up tests, Nucl. Eng. Technol. 54 (2022) 3897-3908.
  27. J.Y. Kim, T.D.C. Nguyen, D. Lee, I.C. Bang, Preliminary safety analysis results of lead cooled fast reactor design using MARS code, in: Korean Nuclear Society Virtual Autumn Meeting, Korean Nuclear Society, 2020, pp. 17-18. December.
  28. B.D. Chung, et al., MARS Code Manual Volume I: Code Structure, System Models, and Solution Methods, KAERI/TR-2812/2004 42, Korea Atomic Energy Research Institute, 2010. issue 9.