DOI QR코드

DOI QR Code

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang (School of Information Engineering and Computer Science, Hebei Finance University) ;
  • Li Yi (School of Finance Technology, Hebei Finance University) ;
  • Zhou Tao (School of Energy and Environment, Southeast University) ;
  • Huang Yanping (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China)
  • Received : 2023.02.01
  • Accepted : 2023.07.23
  • Published : 2023.11.25

Abstract

In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Keywords

Acknowledgement

This research is financially supported by Beijing natural science foundation (3172032) and Special Fund for "Double First Class" Discipline Construction of Southeast University (3203002104A2).

References

  1. Dan Huang, Zan Wu, BengtSunden, Wei Li, A brief review on convection heat transfer of fluids at supercriticalpressures in tubes and the recent progress, Appl. Energy 162 (2016) 494-505.
  2. J.W. Ackerman, Pseudoboiling heat transfer to supercritical pressure waterin smooth and ribbed tubes, J. Heat Transfer, Trans. ASME 92 (3) (1970) 490-498 (P69-WA/HT-2).
  3. L.F. Glushchenko, O.F. Gandzyuk, Temperature conditions at the wall of an annular channel with internal heating at supercritical pressures, High Temp. 10 (4) (1972) 734-738.
  4. H. Zahlan, S. Tavoularis, D.C. Groeneveld, A look-up table for trans-critical heat transfer in water-cooled tubes, Nucl. Eng. Des. (285) (2015) 109-125.
  5. Wadim Jagera, Victor Hugo, Sanchez Espinozaa, Antonio Hurtado, Review and proposal for heat transfer predictions at supercritical waterconditions using existing correlations and experiments, Nucl. Eng. Des. 241 (2011) 2184-2203.
  6. Alessandro Mazzola, Integrating artificial neural networksand empirical correlations for the predictionof water-subcooled critical heat flux, Rev. Gen. Therm. 36 (11) (1997) 799-806.
  7. Xiang Ling HaoPeng, Predicting thermal-hydraulic performances in compact heat exchangersby support vector regression, Int. J. Heat Mass Tran. (84) (2015) 203-213.
  8. Wang Jin-sheng,LI Yong-le,Yang Jian,et al.Adaptive algorithm based on Bayesian support vector regression for structural reliability analysis [J/OL]. Chin. J. Comput. Mech.:1-10[2021-07-2].(in chinese).
  9. Pengchuan Yao, Research on condition monitoring method for nuclear power plants based on data drive, Nucl. Power Eng. 41 (S1) (2020) 135-139 (in chinese).
  10. Y.I. ling-fan, Yong-jun Yan, Jian-liang Zhou, et al., Research of nuclear detecor circuit fault diagnosis based on support vector machine, Atomic Energy Sci. Technol. 49 (9) (2015) 1690-1694 (in chinese).
  11. Wangxiao-long, CAIQi Gaixiu-qing, et al., Study of reactor power prediction during load change process based on signal reconstruction, Atomic Energy Sci. Technol. 46 (S1) (2012) 351-355 (in chinese).
  12. Stephen Marsland, Machine Learning: an Algorithmic Perspective[M], 11, Machinery Industry Press, 2019.
  13. Yu.V. Vikhrev, Yu.D. Barulin, A.S. Kon'kov, A study of heattransfer in vertical tubes at supercritical pressures, Therm. Eng. 14 (9) (1967) 116-119.
  14. Sarah Mokrya, Igor Pioroa, AmjadFaraha, KrystenKinga, SahilGuptaa, WarghaPeimana, PavelKirillov, Development of supercritical water heat-transfer correlation for vertical baretubes, Nucl. Eng. Des. (241) (2011) 1126-1136.
  15. K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fuji, S. Yoshida, Forced convectiveheat transfer to supercritical water flowing in tubes, Int. J. Heat Mass Tran. 15 (1972) 2575-2593.
  16. Han Wang, Qincheng Bi, Zhendong Yang, Linchuan Wang, Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water, Ann. Nucl. Energy 80 (2015) 416-428.
  17. H. Griem, A new procedure for the prediction of forced convection heat transferat near- and supercritical pressure, Heat Mass Tran. 31 (1996) 301-305.
  18. H. Herkenrath, P. Moerkenstein, U. Jung, F. Weckman, WaermeueberganganWasserbeierzwungenerStroemungimDruckbereich von 140 bis250bar, EURATOM, Berlin, 1967 (1967). EUR 3658 d.
  19. P. Kirillov, R. Pometko, A. Smirnov, V. Grabezhnaia, I. Pioro, R. Duffey, H. Khartabil, Experimental study on heat transfer to supercritical water flowing in1- and 4-m-long vertical tubes, Tsukuba, Japan, in: Proc. GLOBAL'05, 2005, p. 518. Oct. 9-13.
  20. R.A. Lee, K.H. Haller, Supercriticalwater heat transfer developmentsand applications, Tokyo, Japan, in: Proceedings of the 5th InternationalHeat Transfer Conference, IV, 1974. September 3-7, 335-339, Paper B7.7.
  21. A.P. Ornatskiy, L.F. Glushchenko, O.F. Gandzyuk, An experimental study of heat transfer in externally-heated annuli at supercritical pressures, Heat Tran. Sov. Res. 4 (6) (1972) 25-29.
  22. M.E. Shitsman, Impairment of the heat transmission at supercritical pressures, Teplofiz. VysokikhTemperatur (High Temperatures) 1 (2) (1963) 237-244, 267-275.
  23. H.S. Swenson, J.R. Carver, C.R. Kakarala, Heat transfer to supercritical waterin smooth bore tubes, Journal of Heat Transfer Series C 87 (1965) 477-484.
  24. X.J. Zhu, Q.C. Bi, T.K. Chen, An investigation on heat transfer characteristics ofSteam-water at different pressure in vertical upward tube, in: 3rd InternationalSymposium on SCWR-Design and Technology, 2007, pp. 12-15. Shanghai, China, March 2007.
  25. H.Y. Gu, M. Zhao, X. Cheng, Experimental studies on heat transfer to supercritical water in circulartubes at high heat fluxes, Exp. Therm. Fluid Sci. (65) (2015) 22-32.
  26. JianguoWang, Huixiong Li, Bin Guo, Shuiqing Yu, YuqianZhang, Tingkuan Chen, Investigation of forced convection heat transfer of supercritical pressurewater in a vertically upward internally ribbed tube, Nucl. Eng. Des. (239) (2009) 1956-1964.
  27. Jie Pan, Yang Dong, Zichun Dong, Zhu Tan, Qincheng Bi, Experimental investigation on heat transfer characteristics of low mass fluxrifled tube with upward flow, Int. J. Heat Mass Tran. (54) (2011) 2952-2961.
  28. S. Yoshida, H. Mori, Heat transfer to supercritical pressure fluids flowing intubes, in: Proc. First Int. Symposium on SCWR Design and Technology, University of Tokyo, 2000, pp. 72-78.
  29. Xiaojing Zhu, Qincheng Bi, Yang Dong, Tingkuan Chen, An investigation on heat transfer characteristics of different pressuresteam-water in vertical upward tube, Nucl. Eng. Des. (239) (2009) 381-388.
  30. Jie Pan, et al., Experimental investigation on heat transfer characteristics of water in vertical upward tube under supercritical pressure, Nucl. Power Eng. 32 (1) (2011) 75-80.
  31. fei Wang, et al., Experimental research on heat transter performance of supercritical water in vertical tube, Atomic Energy Sci. Technol. 47 (6) (2013) 933-939.
  32. X u Feng, et al., Experimental investigation to the heat transfer characteristics of water in vertical pipes under supercritical pressure, JOURNAL OF XI'AN JIAO TONG UNIVERSITY 39 (5) (2005) 468-471.
  33. A.A. Bishop, L.O. Sandberg, L.S. Tong, Forced Convection Heat Transfer to Water at Near Critical Temperatures and Supercritical Pressures, WCAP-2056-P, Part-III-B, 1964.
  34. E.A. Krasnoshchekov, V.S. Protopopov, Experimental study of heat exchange in carbon dioxide in the supercritical range at high temperature drops, Teplofiz. Vysok. Temp. 4 (3) (1966) 389-398.
  35. J.D. Jackson, Semi-empirical model of turbulent convective heat transfer to fluids at supercritical pressure, Paper No. 48914, in: Proc. 16th International Conference on Nuclear Engineering, ICONE16, Orlando, Florida, USA, 2008, pp. 11-15.
  36. X. Cheng, Y.H. Yang, S.F. Huang, A simplified method for heat transfer prediction of supercritical fluids in circular tubes, Ann. Nucl. Energy (36) (2009) 1120-1128.