DOI QR코드

DOI QR Code

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Gil-Eon Jeong (Transportation and Storage R&D Section, Korea Atomic Energy Research Institute) ;
  • Hyeonbeen Lee (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University) ;
  • Woo-Seok Choi (Transportation and Storage R&D Section, Korea Atomic Energy Research Institute) ;
  • Jin-Gyun Kim (Department of Mechanical Engineering (Integrated Engineering), Kyung Hee University)
  • Received : 2023.03.31
  • Accepted : 2023.07.24
  • Published : 2023.11.25

Abstract

The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20211710200020). And this work was partially supported by the Ministry of Science and ICT (MSIT) of the Republic of Korea (No. 2020M2C1A1061066).

References

  1. G.E. Jeong, Y.Y. Yang, K.S. Bang, Structural integrity of KJRR-F fresh nuclear fuel under vehicle-induced vibration for normal transport condition, Nucl. Eng. Technol. 54 (4) (2022) 1355-1362, https://doi.org/10.1016/j.net.2021.09.044 [doi:.
  2. Longlong Tao, Jin Wang, Pengcheng Long, Dagui Wang, Fang Wang, Baichang Zhou, Jun Chen, Probabilistic safety assessment method for spent nuclear fuel road transportation, Ann. Nucl. Energy 137 (2020), 107043, https://doi.org/10.1016/j.anucene.2019.107043 [doi:.
  3. J. Jeong, D.K. Cho, H.J. Choi, J.W. Choi, Comparison of the transportation risks for the spent fuel in Korea for different transportation scenarios, Ann. Nucl. Energy 38 (2-3) (2011) 535-539, https://doi.org/10.1016/j.anucene.2010.09.030.
  4. H. Jiang, J.J. Wang, Spent nuclear fuel system dynamic stability under normal conditions of transportation, Nucl. Eng. Des. 310 (2016) 1-14, https://doi.org/10.1016/j.nucengdes.2016.09.033.
  5. A.A. Ryabov, V.I. Romanov, G.I. Sotskov, Numerical simulations of dynamic deformation of air transport fresh fuel package in accidental impacts, in: Sarov Open Computing Center, Sarov, Nizhniy Novgorod region,(RU), 2003.
  6. Paul E. McConnell, et al., Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. No. SAND2014-20495, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2014.
  7. R.C. Ewing, Long-term storage of spent nuclear fuel, Nat. Mater. 14 (3) (2015) 252-257, https://doi.org/10.1038/nmat4226.
  8. T. Saegusa, et al., Review and future issues on spent nuclear fuel storage, Nucl. Eng. Technol. 42 (3) (2010) 237-248, https://doi.org/10.5516/NET.2010.42.3.237.
  9. J.H. Ko, J.H. Park, I.S. Jung, G.U. Lee, C.Y. Baeg, T.M. Kim, Shielding analysis of dual purpose casks for spent nuclear fuel under normal storage conditions, Nucl. Eng. Technol. 46 (4) (2014) 547-556, https://doi.org/10.5516/NET.08.2013.039.
  10. J.W. Kim, H. Jang, D.H. Lee, H.H. Cho, J. Lee, M. Kim, H. Ju, A modularized numerical framework for the process-based total system performance assessment of geological disposal systems, Nucl. Eng. Technol. 54 (8) (2022) 2828-2839, https://doi.org/10.1016/j.net.2022.02.018.
  11. H.J. Choi, J.Y. Lee, J. Choi, Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea, Nucl. Eng. Technol. 45 (1) (2013) 29-40, https://doi.org/10.5516/NET.06.2012.006.
  12. D.G. Bennett, R. Gens, Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion, J. Nucl. Mater. 379 (1-3) (2008) 1-8, https://doi.org/10.1016/j.jnucmat.2008.06.001.
  13. Ltd. Kore hydro & nuclear power Co, Status of spent nuclear fuel. https://npp.khnp.co.kr/index.khnp, 03/01/2023.
  14. J.H. Lim, S.S. Cho, W.S. Choi, International research status on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport, J. Nucl. Fuel Cycle Waste Technol. 17 (2) (2019) 167-181, https://doi.org/10.7733/jnfcwt.2019.17.2.167.
  15. Thomas L. Sanders, et al., A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements. No. SAND-90-2406; TTC-1019, Sandia National Labs., Albuquerque, NM (United States), 1992.
  16. Paul E. McConnell, ENSA ENUN 32P Rail-Cask Transport Tests Start June 2017. No. SAND2017-5093PE, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017.
  17. E.A. Kalinina, C. Wright, L. Lujan, N. Gordon, K.M. Norman, Data Analysis of ENSA/DOE Rail Cask Tests, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018. No. SAND-2018-13258R.
  18. P.E. McConnell, R. Wauneka, S.J. Saltzstein, K.B. Sorenson, Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. No. SAND2014-20495, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2014.
  19. J.H. Lim, Sea Transportation Test with Surrogate Spent Nuclear Fuel under Normal Conditions of transport, 2022. KAERI/TR-9086/.
  20. J.H. Lim, W.S. Choi, Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport, Nucl. Eng. Technol. 54 (11) (2022) 4030-4048, https://doi.org/10.1016/j.net.2022.06.023.
  21. U.S. NRC, "10 CFR Part 71, Packaging and Transportation of Radioactive Material".
  22. G.E. Jeong, W.S. Choi, S.S. Cho, Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel, Nucl. Eng. Technol. 53 (7) (2021) 2268-2276, https://doi.org/10.1016/j.net.2021.01.019.
  23. H.S. Dho, T.M. Kim, C.H. Cho, The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask, J. Nucl. Fuel Cycle Waste Technol. 14 (4) (2016) 411-422, https://doi.org/10.7733/jnfcwt.2016.14.4.411.
  24. A.G. Goldhofer, Product brochure, THP/SL-Family, https://www.goldhofer.com/en/heavyduty-modules/towed-thp-sl. (Accessed 18 February 2023).
  25. FunctionBay, Inc, RecurDyn online manual V9R4. https://functionbay.com/documentation/onlinehelp/default.htm#!Documents/introduction.htm. (Accessed 18 February 2023).
  26. M.A. Abdelkareem, M.M. Makrahy, A.M. Abd-El-Tawwab, A.S.A. El-Razaz, M. K. Kamal Ahmed Ali, M.M. Moheyeldein, An analytical study of the performance indices of articulated truck semi-trailer during three different cases to improve the driver comfort, Proc. Inst. Mech. Eng. K 232 (1) (2018) 84-102, https://doi.org/10.1177/1464419317709895.
  27. J.H. Lim, D.S. Hwang, K.W. Kim, G.H. Lee, J.G. Kim, A coupled dynamic loads analysis of satellites with an enhanced Craig-Bampton approach, Aero. Sci. Technol. 69 (2017) 114-122, https://doi.org/10.1016/j.ast.2017.06.023.
  28. M.S.C. Nastran, Basic Dynamic Analysis User's Guide, MSC. Software Corporation, 2004.
  29. Yongchul Choi, Gwanghun Gim, Improved UA Tire Model as a Semi-empirical Model. No. 2000-05-0278, in: SAE Technical Paper, 2000.
  30. D.W. Park, E. Fernando, J. Leidy, Evaluation of predicted pavement response with measured tire contact stresses, Transport. Res. Rec. 1919 (1) (2005) 160-170, https://doi.org/10.1177/0361198105191900117.
  31. MSC, ADAMS, User's Manual, MSC. Software Corporation, 2005.
  32. F. Tyan, Y.F. Hong, S.H. Tu, W.S. Jeng, Generation of random road profiles, J. Adv. Eng. 4 (2) (2009) 1373-1378.
  33. ISO 8608, mechanical vibrations-road surface profile data, Int. Stand. Org., 2016, pp. 1-36, 3.
  34. C. Pan, R. Zhang, H. Luo, H. Shen, Baseline correction of vibration acceleration signals with inconsistent initial velocity and displacement, Adv. Mech. Eng. 8 (10) (2016), https://doi.org/10.1177/1687814016675534.
  35. G. Wheeler, A. Mantrala, S.C. Ashmore, H.C. Hodges, Integration of Virtual Prototyping with Instrumented Testing of Vehicles, S.A.E. Tech. Pap., 2000, https://doi.org/10.4271/2000-01-3439, 2000-01-3439.