DOI QR코드

DOI QR Code

Laser beam decontamination of metallic surfaces with a pulsed (150 W) Nd: YAG laser

  • Anne-Maria Reinecke (Technische Universitat Dresden, Faculty of Mechanical Engineering, Institute of Hydrogen and Nuclear Energy) ;
  • Margret Acker (Technische Universitat Dresden, Radiation Protection Section and Central Radionuclide Laboratory) ;
  • Steffen Taut (Technische Universitat Dresden, Radiation Protection Section and Central Radionuclide Laboratory) ;
  • Marion Herrmann (Technische Universitat Dresden, Faculty of Mechanical Engineering, Institute of Hydrogen and Nuclear Energy) ;
  • Wolfgang Lippmann (Technische Universitat Dresden, Faculty of Mechanical Engineering, Institute of Hydrogen and Nuclear Energy) ;
  • Antonio Hurtado (Technische Universitat Dresden, Faculty of Mechanical Engineering, Institute of Hydrogen and Nuclear Energy)
  • Received : 2023.04.18
  • Accepted : 2023.07.26
  • Published : 2023.11.25

Abstract

Laser decontamination of radioactive surfaces is an innovative technology. Our contribution to improving this technology includes studies on laser beam decontamination with a pulsed laser of an average power of 150 W, equipped with a hand guided working head. Our investigations are focused on metallic surfaces typical in nuclear power plants, such as stainless steel, bright and rusted mild steel, galvanized steel, and painted steel. As typical nuclides of contaminated surfaces we chose Co-60 and Cs-137, the most frequently occurring nuclides in many nuclear plant components; Sr-85 as a representative of Sr-90, the potentially most harmful fission nuclide; and Am-241 as a representative of the minor alpha-radiation emitting actinides. Here, we present our results of decontamination and recovery ratios. Decontamination ratios of 90-100% were achieved on different surfaces.

Keywords

Acknowledgement

We would like to thank the German Federal Ministry of Education and Research, which financed this work within the framework of the FORKA funding program (FKZ: 15S9418A). Furthermore, we would like to thank Mr. Dr. Wiechers, head of dismantling at the Karlsruhe reprocessing plant, and Mr. Carsten Friedrich, deputy head of the dismantling department at VEK Karlsruhe, for their support in the successful application of the method in the control area of WAK.

References

  1. IAEA, State of the art technology for decontamination and dismantling of nuclear facilities. https://www-pub.iaea.org/mtcd/publications/pdf/trs395_scr/d395_part 1_scr.pdf. (Accessed 30 May 2023).
  2. https://lpt.glatt.com/. (Accessed 30 May 2023).
  3. https://www.hofeditz-baunatal.de/en/laser-reinigung. (Accessed 30 May 2023).
  4. J. Knorr, W. Lippmann, A.-M. Reinecke, et al., Decontamination of siliceous surfaces by laser ablation with simultaneous waste product conditioning, KONTEC (2005) 20. - 22.04.2005, Berlin.
  5. M. Herrmann, W. Lippmann, A. Hurtado, The Release of Radionuclides in the Laser Decontamination Process, Icone 17th, Brussel, 2009.
  6. A. Anthofer, W. Lippmann, A. Hurtado, Laser Decontamination of Epoxy Painted Concrete Surfaces in Nuclear Plants Original Research Article, vol. 57, Optics & Laser Technology, April 2014, pp. 119-128.
  7. A. Anthofer, W. Lippmann, A. Hurtado, Development and testing of a laser-based decontamination system, J.Optic. Laser Technol. 48 (2013) 589-598.
  8. G. Greifzu, T. Kahl, M. Herrmann, W. Lippmann, A. Hurtado, Laser-based decontamination of metal surfaces, Opt Laser. Technol. 117 (2019) 293-298.
  9. T. Kahl, F. Lohse, M. Herrmann, A. Hurtado, Evaluation of particle release during cleaning of coated surfaces with pulsed Nd:YAG laser, J. Aerosol Sci. 172 (2023), 106187.
  10. R.L. Demmer, R.L. Ferguson, Testing and Evaluation of Light Ablation Decontamination, vol. 94, Idaho National Engineering Laboratory, 1994, 0134.
  11. B. Baigalmaa, H.J. Won, J.K. Moon, C.H. Jung, J.H. Hyun, A comprehensive study on the laser decontamination of surfaces contaminated with Cs(+)ion, Appl. Radiat. Isot. 67 (2009) 1526-1529.
  12. L. Carvalho, W. Pacquentin, M. Tabarant M, H. Maskrot, A. Semerok, Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces, EPJ Nucl. Sci. Technol. 3 (2017) 30.
  13. S. Sadanori, A. Seiji, T. Inoue, Applying Laser Technology to Decommissioning for Nuclear Power Plant, Advanced High-Power Lasers and Applications, Osaka Japan, 1999.
  14. J.P. Nilaya, P. Raote, A. Kumar, D.J. Biswas, Laser-assisted decontamination - a wavelength dependent study, Appl. Surf. Sci. 254 (22) (2008) 7377-7380.
  15. H. Won, J. Park, C. Jung, W. Choi, J. Moon, Decontamination of radioactive material by Nd:YAG laser, Asian J. Chem. 10 (2013) 5819-5822.
  16. Ph Delaporte, M. Gastaud, W. Marine, M. Sentis, et al., Dry Excimer laser cleaning applied to nuclear decontamination, Appl. Surf. Sci. (2003) 208-209.
  17. Product data sheet. https://www.fstweb.de/fileadmin/user_upload/Downloads/4_Produktdatenbl%C3%A4tter/DE/1_Filtration/05_EFST_Ind/Produktdatenblatt_FST_EFST_ZN-XN-XXN_DE-20200324.pdf. (Accessed 30 May 2023).
  18. DIN ISO 7503-2:2017-12, Measurement of radioactivity - Measurement and evaluation of surface contamination - Part 2: Test method using wipe-test samples (ISO 7503-2:2016).
  19. D.L. Smith, Thin-film Deposition, Principles & Practice, McGraw-Hill, 1995, 0-07-113913-3.
  20. https://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4301_de.pdf. (Accessed 30 May 2023).
  21. https://webshop.schachermayer.com/cdn/medias/docus/53/sdat_Datenblatt_DC01.pdf. (Accessed 30 May 2023).
  22. https://www.britannica.com/science/zinc. (Accessed 30 May 2023).
  23. https://www.guidechem.com/dictionary/en/1332-37-2.html. (Accessed 30 May 2023).
  24. H.-G. Hofmann, J. Spindler, Verfahren der Oberflachentechnik, Fachbuchverlag Leipzig, 2004, pp. 44-46, 3-446-22228-6.
  25. H.J. Won, S.H. Jung, C.H. Jung, B.S. Choi, K.E. Lee, J.-K. Moon, Laser removal of contaminants on the metal surface, Proceed. ASME (2011). ICEM2011-59343, 2011.
  26. L. Carvalho, W. Pacquentin, M. Tabarant, A. Semerok, H. Maskrot, Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel, Appl. Surf. Sci. 526 (2020), 146654.
  27. V.P. Veiko, T.Y. Mutin, V.N. Smirnov, E.A. Shakhno, Laser decontamination of radioactive nuclides polluted surfaces, Laser Phys. 21 (3) (2011) 608-613.