DOI QR코드

DOI QR Code

Concepts of heat dissipation of a disposal canister and its computational analysis

  • Minseop Kim (Research Center for Spent Nuclear Fuel Storage and Disposal, Korea Atomic Energy Research Institute) ;
  • Minsoo Lee (Research Center for Spent Nuclear Fuel Storage and Disposal, Korea Atomic Energy Research Institute) ;
  • Jinseop Kim (Research Center for Spent Nuclear Fuel Storage and Disposal, Korea Atomic Energy Research Institute) ;
  • Seok Yoon (Research Center for Spent Nuclear Fuel Storage and Disposal, Korea Atomic Energy Research Institute)
  • Received : 2023.02.10
  • Accepted : 2023.07.27
  • Published : 2023.11.25

Abstract

The stability of engineered barriers in high-level radioactive waste disposal systems can be influenced by the decay heat generated by the waste. This study focuses on the thermal analysis of various canister designs to effectively lower the maximum temperature of the engineered barrier. A numerical model was developed and employed to investigate the heat dissipation potential of copper rings placed across the buffer. Various canister designs incorporating copper rings were presented, and numerical analysis was performed to identify the design with the most significant temperature reduction effect. The results confirmed that the temperature of the buffer material was effectively lowered with an increase in the number of copper rings penetrating the buffer. Parametric studies were also conducted to analyze the impact of technical gaps, copper thickness, and collar height on the temperature reduction. The numerical model revealed that the presence of gaps between the components of the engineered barrier significantly increased the buffer temperature. Furthermore, the reduction in buffer temperature varied depending on the location of the gap and collar. The methods proposed in this study for reducing the buffer temperature hold promise for contributing to cost reduction in radioactive waste disposal.

Keywords

Acknowledgement

This research was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant (2021M2E1A1085193), and the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF) (2021M2E3A2041351) funded by the Korean government (Ministry of Science and ICT, MSIT).

References

  1. M. Lee, Long-term Evolution of GyeongJu Bentonite Buffer in KURT Underground Environment, 2020. KAERI/TR-8011/2020.
  2. V.K. Sharma, F.J. Millero, The oxidation of Cu (I) in electrolyte solutions, J. Solut. Chem. 17 (6) (1988) 581-599.
  3. M. Manaka, The effective diffusion coefficient of dissolved oxygen and oxidation rate of pyrite by dissolved oxygen in compacted purified and crude sodium bentonites in carbonate buffered solution, Nucl. Technol. 143 (3) (2003) 335-346.
  4. M. Martin, J. Cuevas, S. Leguey, Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite, Appl. Clay Sci. 17 (1-2) (2000) 55-70.
  5. J. Wilson, A. Bond, Impact of Elevated Temperatures on Bentonite Buffers, 2016. QRS-1384Q-R3 Version 1.2, Quintessa.
  6. L. Zheng, J. Rutqvist, H. Xu, J.T. Birkholzer, Coupled THMC models for bentonite in an argillite repository for nuclear waste: illitization and its effect on swelling stress under high temperature, Eng. Geol. 230 (2017) 118-129.
  7. M. Lee, Technical Analysis of Design & Manufacturing of a Disposal Canister for Deep Geologic Disposal, 2011. KAERI/TR-4458/2011.
  8. H. Hokmark, B. Falth, Thermal Dimensioning of the Deep Repository. Influence of Canister Spacing, Canister Power, Rock Thermal Properties and Nearfield Design on the Maximum Canister Surface Temperature, 2003. SKB Technical Report TR03-09.
  9. J.P. Lee, H.J. Choi, J.W. Choi, M. Lee, Increasing thermal conductivity from mixing of additive on a domestic compacted bentonite buffer, J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 11 (1) (2013) 11-21.
  10. D. Leung, H. Holton, AMEC Report RWMD Project RP51 TN-E2.2, Review of the Current Status of Work on Enhanced Bentonite Buffer Materials, Vol 17, 2014.
  11. J.Y. Lee, D.K. Cho, H.J. Choi, J.W. Choi, L.M. Wang, Analyses of disposal efficiency based on nuclear spent fuel cooling time and disposal tunnel/pit spacing for the design of a geological repository, Prog. Nucl. Energy 53 (4) (2011) 361-367.
  12. S. Yoon, M.S. Lee, G.Y. Kim, S.R. Lee, M.J. Kim, A prediction of thermal conductivity for compacted bentonite buffer in the high-level radioactive waste repository, J. Kor. Geotech. Soc. 33 (7) (2017) 55-64.
  13. S. Yoon, S. Park, M.S. Kim, G.Y. Kim, S.R. Lee, Thermal conductivity evaluation of compacted bentonite buffers considering temperature variations, J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 18 (1) (2020) 43-49.
  14. T. Jnc, Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, vol. 12, Japan Nuclear Cycle Development Institute H, 2000, pp. 2000-2003.
  15. M. Lee, H.J. Choi, J.W. Lee, J.W. Lee, Improvement of the Thermal Conductivity of a Compact Bentonite Buffer, KAERI Technical Report, 2013. KAERI/TR-5311/2013.
  16. J. Lee, I. Kim, H. Choi, D. Cho, An improved concept of deep geological disposal system considering arising characteristics of spent fuels from domestic nuclear power plants, J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 17 (4) (2019) 405-418.
  17. I. Kim, H. Choi, M. Yoo, Thermal Dimensioning of SiC Canister Applied A-KRS, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2014. May 29-30, 2014.
  18. Y. Wang, T. Hadgu, Enhancement of thermal conductivity of bentonite buffer materials with copper wires/meshes for high-level radioactive waste disposal, Nucl. Technol. 206 (10) (2020) 1584-1592.
  19. COMSOL Multiphysics® v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.
  20. M. Kim, S. Lee, S. Yoon, M.K. Jeon, Identification of mechanical Parameters of kyeongju bentonite based on artificial neural network technique, J. Nuc. Fuel Cycle Waste Technol. (JNFCWT) 20 (3) (2022) 269-278.
  21. S. Whitaker, Flow in porous media I: a theoretical derivation of Darcy's law, Transport Porous Media 1 (1) (1986) 3-25.
  22. H.C. Berg, Random Walks in Biology, Princeton University Press, 1993.
  23. D.P. Hodgkinson, A mathematical model for hydrothermal convection around a radioactive waste depository in hard rock, Ann. Nucl. Energy 7 (6) (1980) 313-334.
  24. M.S. Kim, J.S. Jeon, M.J. Kim, J. Lee, S.R. Lee, A multi-objective optimization of initial conditions in a radioactive waste repository by numerical thermo-hydro-mechanical modeling, Comput. Geotech. 114 (2019), 103106.
  25. J.O. Lee, K. Birch, H.J. Choi, Coupled thermal-hydro analysis of unsaturated buffer and backfill in a high-level waste repository, Ann. Nucl. Energy 72 (2014) 63-75.
  26. J.Y. Lee, M. Lee, I. Kim, H.J. Choi, D.K. Cho, An Engineered Barrier Concept of Reference Deep Geological Disposal System for Hi-Burnup Spent Fuel, 2018. KAERI/TR-7405/2018.
  27. H.J. Choi, J.Y. Lee, S.S. Kim, S.K. Kim, D.K. Cho, K.Y. Kim, K.S. Jeon, J.W. Kim, P. S. Hahn, W.J. Cho, J.W. Lee, S.K. Kwon, W.I. Ko, Y. Lee, K.C. Kang, J.H. Cha, B. S. Jeong, Y.W. Seo, HLW Disposal System Development, 2006. KAERI/RR-2765/2006.
  28. W.J. Cho, S. Kwon, J.O. Lee, Long-term Evolution of GyeongJu Bentonite Buffer in KURT Underground Environment, 2020. KAERI/TR-8011/2020.
  29. J.O. Lee, H.J. Choi, G.Y. Kim, D.K. Cho, Numerical analysis of the effect of gap-filling options on the maximum peak temperature of a buffer in an HLW repository, Prog. Nucl. Energy 111 (2019) 138-149.
  30. F.G. Gibb, K.P. Travis, N.A. McTaggart, D. Burley, A model for heat flow in deep borehole disposals of high-level nuclear waste, J. Geophys. Res. Solid Earth 113 (B5) (2008).
  31. X. Li, C. Zhang, K.J. Rohlig, Simulations of THM processes in buffer-rock barriers of high-level waste disposal in an argillaceous formation, J. Rock Mech. Geotech. Eng. 5 (4) (2013) 277-286.