DOI QR코드

DOI QR Code

A novel radiation-dependence model of InP HBTs including gamma radiation effects

  • Jincan Zhang (Electrical Engineering College, Henan University of Science and Technology) ;
  • Haiyi Cai (Electrical Engineering College, Henan University of Science and Technology) ;
  • Na Li (Electrical Engineering College, Henan University of Science and Technology) ;
  • Liwen Zhang (Electrical Engineering College, Henan University of Science and Technology) ;
  • Min Liu (Electrical Engineering College, Henan University of Science and Technology) ;
  • Shi Yang (Novaco Microelectronics Technologies Ltd.)
  • Received : 2021.08.30
  • Accepted : 2023.07.31
  • Published : 2023.11.25

Abstract

In order to predict the lifetime of InP Heterojunction Bipolar Transistor (HBT) devices and related circuits in the space radiation environment, a novel model including gamma radiation effects is proposed in this paper. Based on the analysis of radiation-induced device degradation effects including both DC and AC characteristics, a set of empirical expressions describing the device degradation trend are presented and incorporated into the Keysight model. To validate the effective of the proposed model, a series of radiation experiments are performed. The correctness of the novel model is validated by comparing experimental and simulated results before and after radiation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No: 61804046), the Foundation of Department of Science and Technology of Henan Province (Grant No. 222102210172, 222102210207, 212102210286), and the Foundation of He'nan Educational Committee (Grant No. 20B510006).

References

  1. A. Zhang, J. Gao, An improved nonlinear model for millimeter-wave InP HBT including DC/AC dispersion effects, IEEE Microw. Wireless Compon. Lett. 31 (5) (May 2021) 465-468, https://doi.org/10.1109/LMWC.2021.3068145. 
  2. Z. Liu, T. Sharma, K. Sengupta, 80-110-GHz broadband linear PA with 33% peak PAE and comparison of stacked common base and common emitter PA in InP, IEEE Microw. Wireless Compon. Lett. 31 (6) (June 2021) 756-759, https://doi.org/10.1109/LMWC.2021.3067233. 
  3. J. Kim, et al., Terahertz signal source and receiver operating near 600 GHz and their 3-D imaging application, IEEE Trans. Microw. Theor. Tech. 69 (5) (May 2021) 2762-2775, https://doi.org/10.1109/TMTT.2021.3061596. 
  4. Z. Liu, T. Sharma, C.R. Chappidi, S. Venkatesh, Y. Yu, K. Sengupta, A 42-62 GHz transformer-based broadband mm-wave InP PA with second-harmonic waveform engineering and enhanced linearity, IEEE Trans. Microw. Theor. Tech. 69 (1) (Jan. 2021) 756-773, https://doi.org/10.1109/TMTT.2020.3037092. 
  5. X.H. Zhao, H.L. Lu, Y.M. Zhang, et al., The impact of laser energy, bias and irradiation positions on single event transients of InP HBT, J. Phys. D Appl. Phys. 53 (14) (Apr. 2020), 145104, https://doi.org/10.1088/1361-6463/ab6622. 
  6. M. Liu, Y.M. Zhang, H.L. Lu, et al., Investigation of proton irradiation effects on InP/InGaAs double heterojunction bipolar transistors, Solid State Electron. 109 (July 2015) 52-57, https://doi.org/10.1016/j.sse.2015.03.008. 
  7. F.S. Minko, T. Stander, Effect of TID electronradiation on SiGe BiCMOS LNAs at V-band, Microelectron. Reliab. 112 (Sep. 2020), 113750, https://doi.org/10.1016/j.microrel.2020.113750. 
  8. J.C. Zhang, K. Xu, J.C. Wang, et al., Modeling and analysis for the effects of gamma irradiation on the DC and AC performance in InGaP/GaAs SHBTs, Radiat. Eff. Defect Solid 175 (5-6) (May 2020) 492-503, https://doi.org/10.1080/10420150.2019.1684916. 
  9. J.X. Zhang, Q. Guo, H.X. Guo, et al., Investigation of enhanced low dose rate sensitivity in SiGe HBTs by Co-60 gamma irradiation under different biases, Microelectron. Reliab. 84 (May 2018) 105-111, https://doi.org/10.1016/j.microrel.2018.03.007. 
  10. S.H. Liu, A. Hussain, D. Li, et al., Total ionizing dose effects of SiGe HBTs induced by Co-60 Gamma-ray irradiation, Nucl. Sci. Eng. 191 (1) (98-103 (2018, https://doi.org/10.1080/00295639.2018.1450004. 
  11. J. Schmidt, J. Korn, G.G. Fischer, et al., Impact of breakdown voltage on gamma irradiation effects in 0.13-㎛ and 0.25-㎛ SiGe HBTs, IEEE Trans. Nucl. Sci. 64 (4) (Apr. 2017) 1037-1041, https://doi.org/10.1109/tns.2017.2682927. 
  12. J.N. Wei, C.H. He, P. Li, et al., Impact of displacement damage on single event transient charge collection in SiGe HBTs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 938 (Sep. 2019) 29-35, https://doi.org/10.1016/j.nima.2019.05.098. 
  13. O.M. Lawal, Z. Li, S. Liu, et al., Experimental study of pulse neutron irradiation damage in SiGe HBT, J. Nucl. Sci. Technol. 55 (12) (Dec. 2018) 1425-1433, https://doi.org/10.1080/00223131.2018.1512427. 
  14. Y.B. Sun, Z.Y. Liu, J. Fu, et al., Degradation and annealing characteristics of NPN SiGe HBT exposed to heavy ions irradiation, Radiat. Phys. Chem. 165 (Dec. 2019), 108433, https://doi.org/10.1016/j.radphyschem.2019.108433. 
  15. V.N. Hegde, K.C. Praveen, T.M. Pradeep, et al., High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs, Nucl. Eng. Technol. 51 (5) (Aug. 2019) 1428-1435, https://doi.org/10.1016/j.net.2019.03.016. 
  16. J.X. Zhang, H.X. Guo, F.Q. Zhang, et al., Heavy ion micro-beam study of single-event transient (SET) in SiGe heterjunction bipolar transistor, Sci. China Inf. Sci. 60 (12) (Dec. 2017), 120404, https://doi.org/10.1007/s11432-017-9249-6. 
  17. Y.B. Sun, J. Fu, J. Xu, et al., Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation, Chin. Phys. B 23 (11) (Nov. 2014), 116104, https://doi.org/10.1088/1674-1056/23/11/116104. 
  18. J.N. Wei, C.H. He, P. Li, et al., Impact of layout and profile optimization for inverse-mode SiGe HBT on SET and TID responses, Microelectron. Reliab. 105 (Feb. 2020), 113561, https://doi.org/10.1016/j.microrel.2019.113561. 
  19. Z. Zhao, N.Y. Jiang, Z.Q. Ma, et al., Impact of finger numbers on the performance of proton-radiated SiGe power HBTs at room and cryogenic temperatures, Microelectron. Reliab. 91 (Dec. 2018) 194-200, https://doi.org/10.1016/j.microrel.2018.10.006. 
  20. K.O. Petrosyants, M.V. Kozhukhov, Physical TCAD model for proton radiation effects in SiGe HBTs, IEEE Trans. Nucl. Sci. 63 (4) (Aug. 2016) 2016-2021, https://doi.org/10.1109/tns.2016.2572658. 
  21. C.H. Li, H.L. Lu, Y.M. Zhang, et al., Proton-induced degradation of InP/InGaAs HBTs predicted by nonionizing energy loss model, IEEE Trans. Nucl. Sci. 62 (3) (Jun. 2015) 1336-1340, https://doi.org/10.1109/tns.2015.2416729. 
  22. M. Liu, Y.M. Zhang, H.L. Lu, et al., Proton irradiation effects on InGaP/GaAs single heterojunction bipolar transistors, Solid State Electron. 96 (Jun. 2014) 9-13, https://doi.org/10.1016/j.sse.2014.03.010. 
  23. Z.E. Fleetwood, A. Ildefonso, G.N. Tzintzarov, et al., SiGe HBT profiles with enhanced inverse-mode operation and their impact on single-event transients, IEEE Trans. Nucl. Sci. 65 (1) (Jan. 2018) 399-406, https://doi.org/10.1109/TNS.2017.2782183. 
  24. N.E. Lourenco, Z.E. Fleetwood, A. Ildefonso, et al., The impact of technology scaling on the single-event transient response of SiGe HBTs, IEEE Trans. Nucl. Sci. 64 (1) (Jan. 2017) 406-414, https://doi.org/10.1109/TNS.2016.2633997. 
  25. N.E. Lourenco, A. Ildefonso, G.N. Tzintzarov, et al., Single-event upset mitigation in a complementary SiGe HBT BiCMOS technology, IEEE Trans. Nucl. Sci. 65 (1) (Jan. 2018) 231-238, https://doi.org/10.1109/TNS.2017.2778803.
  26. P. Li, M.H. Liu, C.H. He, et al., An investigation of ionizing radiation damage in different SiGe processes, Chin. Phys. B 26 (8) (Aug. 2017), 088503, https://doi.org/10.1088/1674-1056/26/8/088503. 
  27. J.X. Zhang, Q. Guo, H.X. Guo, et al., Impact of bias conditions on total ionizing dose effects of 60Coγ in SiGe HBT, IEEE Trans. Nucl. Sci. 63 (2) (April 2016) 1251-1258, https://doi.org/10.1109/TNS.2016.2522158. 
  28. A. Bandyopadhyay, S. Subramanian, S. Chandrasekhar, et al., Degradation of DC characteristics of InGaAs/InP single heterojunction bipolar transistors under electron irradiation, IEEE Trans. Electron. Dev. 46 (5) (May 1999) 840-849, https://doi.org/10.1109/16.760388. 
  29. A. Bandyopadhyay, S. Subramanian, S. Chandrasekhar, et al., Degradation of InGaAs/InP double heterojunction bipolar transistors under electron irradiation, IEEE Trans. Electron. Dev. 46 (5) (May 1999) 850-858, https://doi.org/10.1109/16.760389. 
  30. J.C. Zhang, Y.M. Zhang, H.L. Lu, et al., The model parameter extraction and simulation for the effects of gamma irradiation on the DC characteristics of InGaP/GaAs single heterojunction bipolar transistors, Microelectron. Reliab. 52 (Dec. 2012) 2941-2947, https://doi.org/10.1016/j.microrel.2012.07.020. 
  31. J.C. Zhang, Y.M. Zhang, H.L. Lu, et al., A novel model for implementation of gamma radiation effects in GaAs HBTs, IEEE Trans. Microw. Theor. Tech. 60 (12) (Dec. 2012) 3693-3698, https://doi.org/10.1109/TMTT.2012.2221137. 
  32. J.C. Zhang, M. Liu, J.C. Wang, et al., Modeling of InP HBTs with an improved Keysight HBT model, Microw. J. 62 (7) (Jul. 2019) 56-62. 
  33. J.C. Zhang, L. Cao, M. Liu, et al., Gamma-induced degradation effect of InP HBTs studied by Keysight model, Nucl. Sci. Eng. 195 (2) (Feb. 2021) 173-184, https://doi.org/10.1080/00295639.2020.1798679. 
  34. J.C. Zhang, B. Liu, L.W. Zhang, et al., A rigorous peeling algorithm for direct parameter extraction procedure of HBT small-signal equivalent circuit, Analog Integr. Circuits Signal Process. 85 (3) (Dec. 2015) 405-411, https://doi.org/10.1007/s10470-015-0586-z.