DOI QR코드

DOI QR Code

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya (Gazi University, Faculty of Technology, Department of Energy Systems Engineering) ;
  • Adem Acir (Gazi University, Faculty of Technology, Department of Energy Systems Engineering) ;
  • Senay Yalcin (Nisantasi University, Department of Industrial Engineering)
  • Received : 2023.05.22
  • Accepted : 2023.08.02
  • Published : 2023.11.25

Abstract

In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.

Keywords

References

  1. T.T. Calam, ''Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples,'', Int. J. Environ. Anal. Chem. 99 (13) (2019) 1298-1312. 
  2. T.T. Calam, Electrochemical oxidative determination and electrochemical behavior of 4-nitrophenol based on an Au electrode modified with electro-polymerized 3, 5-diamino-1, 2, 4-triazole film, Electroanalysis 32 (1) (2020) 149-158. 
  3. M.T. Balta, I. Dincer, A. Hepbasli, Comparative assessment of various chlorine family thermochemical cycles for hydrogen production, Int. J. Hydrogen Energy 41 (19) (2016) 7802-7813. 
  4. S. Asal, M. Ozkaya, A. Acir, A study of hydrogen production by using SMR, S-I and HTE methods in a PACER fusion concept based on thorium molten salt fuel, Fuel 333 (2) (2023), 126602. 
  5. D. Baldwin, M. Campbell, C. Ellis, M. Richards, A. Shenoy, MHR desing, technology and applictions, Energy Convers. Manag. 49 (7) (2008) 1898-1901. 
  6. S.T. Revankar, Transient analysis of coupled high temperature nuclear reactor to a thermochemical hydrogen plant, Int. J. Hydrogen Energy 38 (14) (2013) 6174-6181. 
  7. L.C. Juarez-Martinez, G. Espinosa-Paredes, A. Vazquez-Rodriguez, H. Romero-Paredes, Energy optimization of a Sulfure -Iodine thermochemical nuclear hydrogen production cycle, Nucl. Eng. Technol. 53 (6) (2021) 2066-2073. 
  8. R. Elder, R. Allen, Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant, Prog. Nucl. Energy 51 (3) (2009) 500-525. 
  9. C. Canavesio, H. Nassini E, A.E. Boh'e, Evaluation of an iron-chlorine thermochemical cycle for hydrogen production, Int. J. Hydrogen Energy 40 (28) (2015) 8620-8632.
  10. Safari F. ve Dincer ˙ I, A study on the Fe-Cl thermochemical water splitting cycle for hydrogen production, Int. J. Hydrogen Energy 45 (38) (2020) 18867-18875. 
  11. M. Lewis, J.G. Masin, The evaluation of alternative thermochemical cycles - Part II: the down-selection process, Int. J. Hydrogen Energy 34 (9) (2009) 4125-4135O. 
  12. S. Asal, A. Acir, A study on nuclear hydrogen production using a novel approach cobalt-chlorine thermochemical cycle in a laser driver fission fusion blanket for various molten salt fuels, Prog. Nucl. Energy 153 (2022), 104443. 
  13. S. Asal, A. Acir, Utilization of the Cu-Cl thermochemical cycle for hydrogen production using a laser driver thorium molten salts, Int. J. Hydrogen Energy 46 (61) (2021) 31133-31142. 
  14. O. Oruc, I. Dincer, Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation, Fuel 286 (2) (2021), 119325. 
  15. A.E. Karaca, A.M.M.I. Qureshy, I. Dincer, '' an overview and critical assessment of thermochemical hydrogen production methods,'', J. Clean. Prod. 385 (20) (2023), 135706. 
  16. A. Acir, S. Asal, Investigation of the hydrogen production of a laser FUSION driver thorium breeder using various coolants, Int. J. Hydrogen Energy 46 (10) (2021) 7087-7098. 
  17. A. Acir, S. Akti, Investigation of hydrogen production potential of the LASER inertial confinement fusion fission energy (LIFE) engine, Int. J. Hydrogen Energy 44 (45) (2019) 24867-24879. 
  18. R.A. Adewale, A.S. Berrouk, S. Dara, A process simulation study of hydrogen and sulfur production from hydrogen sulfide using the Fe-Cl hybrid process, J. Taiwan Inst. Chem. Eng. 54 (2015) 20-27. 
  19. G. Ozisik, N. Demir, M. ubeyli, H. Yapici, Hydrogen production via water splitting process in a molten-salt fusion breeder, Int. J. Hydrogen Energy 35 (14) (2010) 7357-7368. 
  20. N. Demir, Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles, Int. J. Hydrogen Energy 38 (2) (2013) 853-860. 
  21. G. Genc, Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride, Int. J. Hydrogen Energy 35 (19) (2010) 10190-10201. 
  22. R.W. Moir, Pacer revisited, Nucl. Sci. Eng. 104 (April) (1990) 364-373. 
  23. A. Szoke, R.W. Moir, A realistic, gradual and economical approach to fusion power, Fusion Technol. 20 (1991) 1012. 
  24. S. Sahin, R.W. Moir, S. unalan, "Neutronic investigation of a power plant using peaceful nuclear explosives, Fusion Technol. 26 (4) (1994) 1311-1325. 
  25. S. Sahin, S. Yalcin, K. Yildiz, Fissile fuel breeding with peaceful nuclear explosives, Fusion Eng. Des. 65 (2003) 643-656. 
  26. J.F. Briesmeister, A General Monte Carlo N-Particle Transport Code, LA-13709M, Los Alamos National Laboratory, MCNP, 2000. 
  27. S. Sahin, H.M. Sahin, A. Acir, LIFE hybrid reactor as reactor grade plutonium burner, Energy Convers. Manag. 63 (2012) 44-50. 
  28. A. Acir, Neutronic analysis of the laser inertial confinement fusion-fission energy (LIFE) engine using various thorium molten salts, J. Fusion Energy 32 (6) (2013) 634-641. 
  29. S. Sahin, B. Sarer, Y. Celik, Neutronic investigations of a laser fusion driven lithium cooled thorium breeder, Prog. Nucl. Energy 73 (2014) 188-196. 
  30. A. Acir, E. Baysal, Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine, Plasma Sci. Technol. 20 (7) (2018). 
  31. Web site, NIST Chemistry WebBook, 2018. http://webbook.nist.gov/chemistry/;. 
  32. Y. Cengel, M. Boles, In: Thermodynamics an Engineering Approach, 2012. 
  33. Scientific Group Thermodata Europe (SGTE), Compounds from CoCl3 to Ge3N4, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology - New Series / Physical Chemistry 19 (9) (2000).