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A B S T R A C T   

Radiation detection systems working at high count rates suffer from the overlapping of their output electric 
pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy 
resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a 
piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model 
which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, 
potentially time-consuming method. 

The main idea of the present study is to replace the NLS technique by an integration-based non-iterative 
method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another 
non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows 
that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS 
method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapo
lation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS 
techniques, but provides the shortest computation time.   

1. Introduction 

Pulse-mode radiation detection systems are widely used in radiation 
spectroscopy and imaging. The idea is to have an individual pulse for 
each single particle which interacts with the detector active volume. To 
achieve the energy information, the pulse amplitude must be propor
tional to the amount of the energy the particle transfers to the detector 
medium. For the case of photon detection, inorganic scintillation de
tectors (like NaI(Tl)) and semiconductor detectors (most often Si and 
Ge) are usually used, each one benefiting from some advantages at the 
expense of some shortcomings [1–3]. 

Scintillation detectors use a chain of scintillator crystal, photo
cathode and photomultiplier tube to convert the incident gamma-ray 
photons to optical photons, optical photons to electrons, and few elec
trons to a large number of electrons, respectively. The detector output 
signals are usually read out by a cascade of preamplifier and amplifier 
(shaper). Scintillation detectors can be made in large sizes with high- 
atomic-number materials to enhance the detection efficiency. Howev
er, their energy resolution is quite poor, mainly due to the photoelectron 
statistics. Semiconductor detectors, on the other hand, benefit from an 
excellent energy resolution, usually at the expense of their lower atomic 

number and detector size [1]. Recently, semiconductor detectors of 
higher atomic number (like CdTe and CdZnTe) have also been developed 
for gamma-ray spectroscopy, with improved detection efficiency and 
room temperature performance near to the cooled Ge detectors [4,5]. 

Particle emission from radiation sources has a random nature. This 
means that the start time of the detector pulses is not predictable: some 
pulses may be far apart in time and some others so close that their pile- 
up becomes inevitable. When this happens, some newcoming pulses ride 
on the tail(s) of preceding pulses, therefore their amplitude (energy 
information) are mismeasured. This effect degrades the energy infor
mation of the system by shifting the energy peaks to wrong spectrum 
channels and by smearing the energy resolution [1,6,7]. 

So far, there have been proposed several solutions to deal with this 
problem, from pile-up prevention to rejection and correction methods 
[8]: in pile-up prevention, the pulses are shortened by analog or digital 
electronic filtering to avoid pulse overlapping. In rejection strategy, all 
infectious pulses are discarded. In pile-up correction, we try not to lose 
information by rejecting pulses, but to recover their true information by 
numerical procedures. 

There exist various pulse information recovery approaches in the 
literature [9]. Template matching methods assume a fixed pulse 
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template, a good assumption for the case of scintillation detectors, to 
establish a transfer matrix that describes the relation between the 
measured and the true pulse amplitudes [10,11]. High yield pile-up 
event recover (HYPER) technique [12] characterizes each individual 
pulse by a single-term exponential decay as: 

V[n] =A1e− α1n (1)  

where V[n] describes the discrete-form voltage signal for which n = 1, 2, 
3, …, N, where N is the number of samples in V[n]. A1 represents the 
amplitude and α1 the decay constant of the exponential term. Based on 
this assumption, HYPER formulation recovers each true pulse amplitude 
by subtracting the intervening tails of the preceding pulses. 

Tail subtraction has also been examined in different other forms. It is 
possible to reconstruct the overlapped parts of a signal by extrapolation, 
to be subtracted from the original waveform [8,13–17]. This requires 
appropriate modelling of the detector pulse, at least the piece of data 
available between the peak point of the preceding pulse and the start 
point of the pile-up pulse. By this approach, we are able to recover not 
only the pulse amplitude, but also its shape and temporal characteristics. 

The trailing edges of the amplifier or preamplifier output pulses are 
governed by the time constants of some RC circuits [1,6,7]. It usually 
inspires using single- or multiple-term exponential models for fitting [8, 
14,17,18]. Even a mono-exponential model like Eq. (1) (as the simplest 
case) is nonlinear. So for model parameter estimation, the nonlinear 
least squares (NLS) algorithm is usually used. NLS algorithm can become 
unacceptably time-consuming due to its iterative nature, noisy or sparse 
nature of the data and badly-assigned initial values or stopping criteria 
of the algorithm. 

The idea of the current study is to examine simple non-iterative so
lutions for pulse tail extrapolation, as part of a pile-up correction pro
cedure, in order to reduce the computation time while maintaining the 
precision of the results. A method of exponential fitting is examined 
which uses the first-order integral of the pulse data. A linear fitting 
strategy, as an even more simplified approach is also studied. 

2. Materials and methods 

In the following, first the setup for experimental data acquisition is 
described. Then the processing algorithms and the pile-up identification 
method are explained in details. 

2.1. Experimental setup 

Experimental data of the present work are acquired by a SCIONIX 
HOLLAND NaI(Tl) scintillation detector (type 51B51/2M, with both 
crystal diameter and thickness of 2”), placed in front of a ~49 mCi 137Cs 
radioactive source (see Fig. 1). 

To prevent from very high fluxes of radiation on detector, the de
tector entrance window is enclosed by a jacket-type single-hole lead 
collimator. NaI(Tl) crystal is coupled to a photomultiplier tube (PMT). 
The PMT output pulses are read out by a charge-sensitive preamplifier, 
then shaped by an amplifier. The amplifier, as well as the bias supplies 
for the detector (the high voltage, HV) and the preamplifier are provided 
by a Novin Teyf NT-124 (HVMCA) device. The amplifier output pulses 
are then fed to an InstruStar-ISDS205A card, functioning as a USB data 
recorder by which analog data are digitized by a rate 24 MHz. Digitized 
data are finally saved and analyzed on an Acer Aspire E1-571G laptop 
(Core i5, 2.6 GHz with 4 GB DDR3 memory). 

Two different source-detector distances (SDDs) 80 and 20 cm are 
considered, called SDD80 and SDD20 hereafter, in order to have both 
cases of low and high count rate. Each dataset is acquired in a ~1 s time. 
Parts of the recorded waveforms of these two cases are provided in 
Fig. 2. Double and triple pile-up events are obvious in the case of SDD20. 
Pulse width is approximately 15 μs. 

Fig. 1. Radiation detection chain for experimental data acquisition. A137Cs 
source is placed at two different source-to-detector distances (SDDs) 80 and 20 
cm. NaI(Tl) scintillator is coupled to a preamplifier, amplifier (shaper), and a 
USB InstruStar-ISDS205A data recorder card. Digitized data are finally saved 
and analyzed by a laptop computer. 

Fig. 2. Pieces of the waveforms obtained by setting SDD equal to 80 and 20 cm.  

Fig. 3. Schematic representation of the pile-up correction method, in which the 
data between the peak point of pulse 1 and the start point of pulse 2 are used for 
extrapolating the tail of pulse 1. The extrapolated tail provides a reference point 
at the start point of pulse 2, with respect to which the true amplitude of pulse 2 
is recovered. 
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2.2. Processing strategies and algorithms 

The present study focuses on pulse tail extrapolation technique, in 
which the undistorted data between the peak point of a pulse and the 
start point of the next pulse is used for reconstructing the overlapped 
part of the first pulse. This way the extrapolated tail provides a corrected 
reference for calculating the true amplitude of the next pulse, which was 
affected by pulse pile-up (see Fig. 3). This strategy has been studied in 
previous works [19–21]. 

This method, despite its simplicity, is applicable only with appro
priate models for pulse fitting. Pulse shape, in general is governed by the 
detector itself and the time constants of the associated electronics. 
However, the time characteristics of the detector are more reflected in 
the pulse rising edge, which are of minimum importance for “tail” 
extrapolation. If pulses are taken from the preamplifier, which can be 
modeled by an equivalent RC circuit, the decay of the pulse trailing edge 
is mainly governed by τ = RC. However, this time constant is usually 
chosen much larger than the charge collection time of the detector and 
therefore, in conventional systems the pulses are shaped by a subsequent 
shaper module [1]. 

A properly-designed shaper can efficiently reduce the pile-up prob
ability, however, if the event rate becomes very high, the amplitudes of 
the shaper output pulses may not be preserved and therefore, the energy 
resolution of the system starts to degrade. This is where the pile-up 
correction procedures come into play. 

Depending on the point where the pulses are taken from (directly 
from the detector, from the preamplifier or from the shaper), different 
simple to complicated pulse models have been proposed in the literature 
[18,22]. When dealing with the pulses of preamplifier or shaper, sums of 
i exponential terms like Eq. (2) are suitable for modelling the pulse 
trailing edge, as it is governed by resistive-capacitive circuits which 
regulate the retreat of the pulse to its baseline by their time constants. 

V[n] =
∑

i
Aie− αin (i= 1, 2, 3,…) (2) 

Exponential terms, however, are non-linear, which necessitates the 
use of appropriate methods for fitting, usually the non-linear least 
squares (NLS). In least squares approach, the idea is to minimize an 
objective function of the sum of the squares of the errors between a 
parametric model and a set of experimental datapoints. If the model is 
linear, the least squares objective would be quadratic, able to be mini
mized in one step via a solution to a system of linear equations [23]. For 
non-linear problems, there is an iterative procedure, needing appro
priate initial solutions and stopping criteria, with a possibility of getting 
stuck in local minima or maxima of the solution space. 

In the current study we aim to simplify the solution to the problem. 
Therefore, a mono-exponential pulse model is selected by setting i = 1 in 
Eq. (2), which results in Eq. (1). This is, however, still a non-linear 
model. For fitting exponential models to radiation detector pulses, 
there have been proposed fast, non-iterative alternatives to NLS which 

work based on integration(s) of the original data [8,9,20,24]. For this 
solution, let us start from the first-order integral of Eq. (1), V(1)[n] as 
follows [25]: 

V(1)[n] =
∑N

k=n
V[k] (3) 

Consider an integral equation as a weighted sum of Eqs. (1) and (3) 
as follows [20]: 

V[n] + α1V(1)[n] − A1 = 0 (4) 

Based on Eq. (4), a system of linear equations can be established: 

⎡

⎢
⎢
⎣

− V(1)[1] 1
− V(1)[2] 1

⋮ ⋮
− V(1)[N] 1

⎤

⎥
⎥
⎦

[
α1
A1

]

=

⎡

⎢
⎣

V[1]

V[2]

⋮

V[N]

⎤

⎥
⎦ (5) 

Having known V[n] and V(1)[n], the above system can be solved to 
finally obtain A1 and α1 as the unknown parameters of the mono- 
exponential model. This solution is free of the need for iterative pro
cedures with answers sufficiently robust against noise (due to the inte
gration embedded in the proposed formulation). 

A careful inspection of the experimental pulses reveals that the 
mono-exponential model might not sufficiently represent the long pulse 
tails. An example is shown in Fig. 4a. Fitting can be improved by using 
more than one exponential terms, as in Eq. (2). Similar integral-equation 
based solutions can be derived for such cases [24–26], however, these 
mathematical models are obviously more complicated with more pa
rameters to be estimated. 

To conserve the idea of using a simple mono-exponential model, we 
can decide not to fit all the available datapoints on the pulse trailing 
edge. This comes from the fact that if a signal is composed of several 
exponential terms of different αi values, terms of larger αi will decay 
faster so that their effect becomes ignorable once an appropriate amount 
of time is passed. Therefore, a simpler exponential model is more prone 
to fit the final parts of the signal. In this study, both the cases of using “all 
the available datapoints” of the pulse trailing edge (similar to Fig. 4a), 
and the case of using “only the second half of the available data” of the 
trailing edge (shown in Fig. 4b) are examined. 

It should be remarked that the pulse on Fig. 4 has all its data avail
able with no pile-up effect. For pile-up cases, the data on trailing edge 
becomes limited by the arrival of the next pulse. 

To further simplify the solution, the mono-exponential model can be 
replaced by a linear model as follows: 

V[n] =Bn + C (6)  

where B and C are the slope and intercept of the linear model to be 
estimated. This is in fact the idea of linear approximation of continuous 

Fig. 4. Fitting a pileup-free experimental pulse by a mono-exponential model by taking into account a) all data and b) the second half of the data on the pulse trailing 
edge. The latter case has provided better results. 
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functions in sufficiently short pieces of their domain. This can be rele
vant in detection systems of very high event rate, in which the pulses 
arrive very close to each other. Another case is when the pulses are taken 
from the preamplifier, with very long tails which are well approximated 
by a linear behavior [21]. For this approach, a system of linear equations 
can be established and solved for B and C according to Eq. (6) [21]: 

⎡

⎢
⎣

1

2
⋮

N

1

1
⋮

1

⎤

⎥
⎦

[
B
C

]

=

⎡

⎢
⎣

V[1]

V[2]

⋮

V[N]

⎤

⎥
⎦ (7)  

2.3. Pile-up identification method 

Experimental data of the present study reveal a pulse length of 
approximately 15 μs. Therefore, pulses with arrival times closer than 15 
μs are considered as pile-up cases. To identify these cases, the pulse 
arrival times were determined and compared by a leading edge detec
tion method. See Fig. 5 for the procedure in which, first the recorded 
waveform was smoothed by a successive application of a moving median 
and a moving mean filter, both with a fixed window size of 50 samples. 
Then the first derivative of the smoothed waveform was taken and 
compared with an appropriate threshold level. This way the arrival 

times of all pulses were obtained, based on which the time intervals 
between the successive pulses were determined. A comparison between 
the calculated time intervals with the typical pulse length 15 μs helped 
finding the pile-up cases. 

The piled-up pulses were first processed by the tail extrapolation 
algorithms discussed in section 2.2, then their recovered amplitudes 
determined. The amplitudes of the pileup-free pulses were recorded 
directly. Finally all the calculated pulse amplitudes were used to fill the 
channels of the pulse height distribution. 

3. Results and discussion 

Results of the analysis of the two experimental datasets obtained by 
placing the detector at SDDs 80 and 20 cm (see section 2.1) are pre
sented in the following. Each dataset was inspected by the leading edge 
detection method described in section 2.3 to find the piled-up pulses. 
The amplitudes of the pileup-free pulses were recorded first. Then the 

Fig. 5. A leading edge detection strategy for determining the pulse arrival 
times. From top to bottom: the original waveform (here, part of the SDD20 
waveform) is smoothed by the application of a moving median filter, then a 
moving mean filter (both with window size = 50). Then the first derivative of 
the smoothed waveform is taken (shown on bottom, arbitrarily multiplied by 
50). A threshold on the derivative signal determines the arrival times of 
the pulses. 

Fig. 6. Energy spectra calculated for the SDD80 dataset by strategy 1. (a): 
Pileup-corrected spectra by mono-exponential fitting by the non-iterative 
method (NIM), linear fitting and mono-exponential fitting by non-linear least 
squares (NLS) method. (b): The uncorrected spectrum, as well as the pileup- 
rejected spectrum for the same dataset. 
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pile-up cases were processed by the non-iterative method of Eq. (5), the 
linear approximation of Eq. (7), and the NLS method. The latter case 
uses the “fit” function of MATLAB R2016b with a single-term expo
nential function and all other fit options set to MATLAB defaults. Both 
systems of linear equations of Eqs. (5) and (7) were solved by the matrix 
left division operator of MATLAB, which provides a least squares solu
tion due to the fact that the coefficient matrices of both Eqs. (5) and (7) 
are non-square. 

All calculations were repeated twice:  

• By tail extrapolation using only the second half of the available 
(undistorted) data on the pulse trailing edge. This is similar to the 
case of Fig. 4b, called “strategy 1” hereafter.  

• By considering all the available data of each pulse. This is similar to 
the case of Fig. 4a, called “strategy 2” hereafter. 

Complex, negative, infinity or undefined values in fitting results 
were discarded in spectrum calculations. 

3.1. Calculating the energy spectra by strategy 1 

In strategy 1, pile-up correction is accomplished by extrapolating the 
pulse tails by using the second half of the available data of each pulse. 
Fig. 6a shows for SDD80 the spectra calculated by the proposed non- 
iterative method as well as the NLS and the linear approximation 
methods. The abscissa of the pulse height distributions are calibrated to 
represent the energy spectra. For 137Cs, a full-energy peak at 662 keV is 
expected, with a Compton continuum standing behind. Compton con
tinua of Fig. 6 suffer from relatively large fluctuations due to the poor 
statistics of the number of pulses recorded in the 1-s acquisition time 
(see section 2.1). Results for all the three NIM, NLS and linear methods 
are almost the same, as expected, because the pile-up cases for SDD80 
are rare with no observable effect on the energy spectra. This is better 
understood by comparing Fig. 6a with Fig. 6b, in which the uncorrected 
spectrum, as well as the pileup-rejected spectrum are calculated for the 
same dataset. The uncorrected spectrum is obtained by the amplitudes of 
all pulses in the original waveform, with no correction method applied. 
In pile-up rejection approach, all pileup-distorted pulses are discarded. 
The uncorrected and the pile-up rejection spectra are not too different 
from each other and from the spectra of Fig. 6a, which confirms the 
minor effect of the very small number of pile-up cases for SDD80 dataset. 

Fig. 7 illustrates the analysis results for the case of SDD20, with a 
procedure similar to the case of SDD80 explained above. The SDD20 
dataset contains considerable pile-up cases. This could be observed by 
looking at the piece of the SDD20 dataset on Fig. 2, or by comparing the 
area under the uncorrected spectrum and the pile-up rejection spectrum 
on Fig. 7b. 

Due to pile-up effects, the full-energy peak of the uncorrected spec
trum in Fig. 7b is slightly shifted to a higher energy channel. Fig. 7a 
illustrates the corrected spectra, in which all the three NIM, NLS and 
linear extrapolation methods have recovered the full-energy peak back 
to its expected energy channel at 662 keV. The corrected spectra of NIM 
and NLS are very similar in all features. The full-energy peak by linear 
extrapolation is, however, of a lower level in comparison with NIM and 
NLS. This is due to the inconsistency of the linear approximation, which 
can result in unacceptable fitting outputs (complex numbers, negative 
values, etc.) that are discarded; or due to the incorrect fitting outputs 
taken into account (for example, see on Fig. 7a the plateau and plain 
patterns for the linear extrapolation spectrum between 700 and 1000 
keV). 

It should be remarked that Compton valleys in spectra of Fig. 7a are 
so filled that it is difficult to detect a clear Compton edge on the spectra. 
This can be attributed to the large number of multiple Compton scat
tering events in the detector, as well as the Compton events scattered 
from the collimator into the detector. 

More details of the analysis of both datasets SDD20 and SDD80 are 
provided in the following. The values of full width at half maximum 
(FWHM), as a measure of energy resolution are provided in Table 1. For 
the case of SDD80, FWHMs are almost the same, due to the fact that the 
pile-up cases are very rare, with minimum effect on the shape of the 
spectrum. For the case of SDD20, the best energy resolution is obtained 

Fig. 7. Energy spectra calculated for the SDD20 dataset by strategy 1. (a): 
Pileup-corrected spectra by NIM, linear fitting and NLS methods. (b): The un
corrected spectrum, as well as the pileup-rejected spectrum for the 
same dataset. 

Table 1 
FWHM values in keV for the energy spectra of Figs. 6 and 7. FWHMs are 
calculated around the full-energy peak of each spectrum.   

SDD 

Method 80 cm (from Fig. 6) 20 cm (from Fig. 7) 

NIM 42.8 62.3 
NLS 42.8 62.4 
Linear 42.3 70.7 
Rejection 42.1 46.6 
Uncorrecteda 42.5 62.5  

a Note the shift in peak position of the uncorrected spectrum for SDD20 
dataset. 
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for the pile-up rejection spectra, at the expense of a considerable drop in 
the number of accepted pulses (see Table 2). Table 1 also shows the 
poorest FWHM for the spectrum of linear extrapolation, mainly due to 
the failure of the linear model in fitting the pulses of this study. 

Table 2 presents for all spectra of Figs. 6 and 7 the total number of 
full-energy counts to the total number of accepted counts for spectrum 
calculation in each case, obtained by calculating the area under the 
spectra respectively from 600 to 724 keV and from 0 to 1200 keV. For 
the case of SDD80, results are almost similar except for the rejection 
spectra, where a slightly less number of counts are recorded. The dif
ferences become more pronounced in the case of SDD20, where pile-ups 
become more prominent, and NIM and NLS perform much better than 
the pile-up rejection and linear extrapolation approaches in preserving 
the full-energy events and generally, the throughput rate of the system. 

Table 3 provides the computation times calculated by the MATLAB 
“tic” and “toc” functions for the pile-up correction algorithms. Each case 
was repeated three times to calculate a mean time value. Processing 
times for the SDD20 dataset are much longer than for SDD80, due to the 
increase in the number of pile-up cases. Linear extrapolation is the 
fastest algorithm, due to its reduced complexity. The difference between 
the computation times of NIM and NLS is quite notable so that NIM is 
nearly 57 (≈1020.10/17.95) times faster than NLS for the SDD20 
dataset, with a similar energy resolution and throughput rate according 
to Tables 1 and 2. The complexity of NIM is also reduced considerably to 
be more congruent with hardware implementation on digital signal 
processing (DSP) boards or field programmable gate arrays (FPGAs). 

3.2. Calculating the energy spectra by strategy 2 

Analyses of the previous section were based on strategy 1, in which 
only the second half of the available data on the trailing edge of each 
pulse were used for tail extrapolation. The piece of data for fitting must 
be chosen carefully, as it can greatly affect the results. In this section, the 
strategy 2 is considered, in which all the available data on the pulse 
trailing edge are used for extrapolation. All other details of the pro
cedure of pulse arrival time determination, pile-up detection and 
correction by NIM, NLS and linear extrapolation are the same as for 
strategy 1. Fig. 8a and b illustrate the pileup-corrected spectra by 
strategy 2 for SDD80 and SDD20 datasets, respectively. 

In Fig. 8, the results for SDD80 dataset are very similar to those by 
strategy 1 shown in Fig. 6a. However, the results for SDD20 dataset have 

degraded substantially: the heights of the full-energy peaks of NIM and 
NLS in Fig. 8b are about 0.8 (≈3000/3760) of those of Fig. 7a. This is 
also the case for the linear extrapolation results (2040/2570 ≈ 0.8). This 
is due to the failure in recovering true amplitudes of some full-energy 
pulses, which are misregistered in channels adjacent to the expected 
channel on the energy spectrum. This can broaden the full-energy peak. 
A comparison between the FWHMs of the pileup-corrected energy 
spectra of Fig. 8 reported in Table 4, with the FWHMs in Table 1 shows a 
nearly 27% (≈ 79.3− 62.3

62.3 ) increase in FWHM for the NIM spectra of 

Table 2 
The number of full-energy counts (the area under peak from 600 to 724 keV) to 
the total number of counts (the area under the curve from 0 to 1200 keV) for the 
energy spectra of Figs. 6 and 7.   

SDD 

Method 80 cm (from Fig. 6) 20 cm (from Fig. 7) 

NIM 21417/72284 257359/856194 
NLS 21417/72284 257065/856742 
Linear 21158/72326 193514/825065 
Rejection 20785/69763 74333/181168 
Uncorrected 21638/72394 252138/842909  

Table 3 
MATLAB computation times (in seconds) for processing the pile-up cases of SDD 
= 80 and 20 cm datasets by NIM, NLS and linear extrapolation methods based on 
strategy 1. Results are the mean values for three times repetition of each 
measurement.   

SDD 

Method 80 cm 20 cm 

NIM 1.00 ± 0.05 17.95 ± 0.15 
NLS 4.30 ± 0.25 1020.10 ± 12.00 
Linear 0.005 ± 0 0.65 ± 0.05  

Fig. 8. Energy spectra calculated for the dataset of (a) SDD = 80 cm and (b) 
SDD = 20 cm by strategy 2. Pileup-corrected spectra by NIM, NLS and linear 
fitting are illustrated. The uncorrected and the pileup-rejected spectra for cases 
(a) and (b) are shown in Fig. 6b and 7b, respectively. 

Table 4 
FWHM values in keV for the energy spectra of Fig. 8   

SDD 

Method 80 cm (from Fig. 8a) 20 cm (from Fig. 8b) 

NIM 42.4 79.3 
NLS 42.4 81.5 
Linear 42.4 65.1  

M.-R. Mohammadian-Behbahani                                                                                                                                                                                                            



Nuclear Engineering and Technology 55 (2023) 4350–4356

4356

SDD20. This is more or less the case also for NLS. 
FWHMs of the spectra by strategy 1 and strategy 2 are almost the 

same for the SDD80 dataset. This is also true for the calculated number 
of full-energy events: compare in this regard the results by strategy 2 (on 
Table 5) with those by strategy 1 (on Table 2). Nevertheless, results are 
quite different for the case of SDD20, where strategy 2 shows reduced 
numbers of full-energy events for all pile-up correction methods. 

The computation times for calculating the energy spectra by strategy 
2 were also obtained. Results are presented in Table 6, which show an 
overall increase in computation time in comparison with strategy 1 (see 
Table 3). It can be attributed to the increased number of data-points in 
strategy 2 which results in larger matrix formulations of the problem. 
Moreover, the insufficiency of the parametric model can increase the 
computation time of the least squares method to reach a mathematically 
acceptable result. The NIM computation time has experienced the most 
increase both for SDD80 and SDD20 datasets, however, it requires an 
absolute time still much less than the time required by the NLS method. 

4. Conclusions 

Concentrated on the problem of pulse pile-up correction in radiation 
detection systems, this article examined two non-iterative approaches 
for pulse tail extrapolation: an integral-equation based method for 
mono-exponential fitting, and a linear fitting method. The integral- 
equation based approach was shown to perform similar with the non- 
linear least squares method with considerably improved speed (nearly 
57 times faster for a high count rate dataset in the present study) and 
reduced complexity of the algorithm. Linear fitting showed the fastest 
performance, however with a degradation of energy resolution and 
throughput rate at high count rates, due to the insufficiency of the linear 
model for pulse fitting. The necessity to choose an appropriate piece of 
data for fitting was also discussed by considering two scenarios of fitting 
“all” or “the second half” of the available data of each pulse. 

In sum, the proposed integral-equation based method was proven to 
be a simple, fast, non-iterative alternative to the conventional non-linear 
least squares method, in order to simplify and speed up the processing 
schemes especially for hardware implementation on DSPs and FPGAs. 
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Table 5 
The number of full-energy counts (the area under peak from 600 to 724 keV) to 
the total number of counts (the area under the curve from 0 to 1200 keV) for the 
energy spectra of Fig. 8   

SDD 

Method 80 cm (from Fig. 8a) 20 cm (from Fig. 8b) 

NIM 21309/72301 242386/858155 
NLS 21309/72301 241520/858407 
Linear 21096/72233 155059/766671  

Table 6 
Mean MATLAB computation times (in seconds) for processing the pile-up cases 
of SDD = 80 and 20 cm datasets by NIM, NLS and linear extrapolation methods 
based on strategy 2.   

SDD 

Method 80 cm 20 cm 

NIM 3.50 ± 0.05 43.05 ± 0.10 
NLS 4.85 ± 0.35 1195.95 ± 1.90 
Linear 0.005 ± 0 0.75 ± 0  
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