Acknowledgement
Technology Innovation Program (20016350, Development of ultra high quality with life longtime of color converting material, process and module for extremely largearea micro LED display) funded by the Ministry of Trade Industry & energy (MOTIE, Korea); Alchemist Project grant funded by Korea Evaluation Institute of Industrial Technology (KEIT) and the Korea Government (MOTIE) (Project Number: 1415179744, 20019169); Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20224000000150).
References
- S. S. Coe, "Quantum dot development," Nat. Photonics 3, 315-316 (2009). https://doi.org/10.1038/nphoton.2009.83
- H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, "Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications," Adv. Mater 31, 1804294 (2019).
- M. K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays," npj Flex Electron. 2, 10 (2018).
- T. Lee, B. J. Kim, H. Lee, D. Hahm, W. K. Bae, J. Lim, and J. Kwak, "Bright and stable quantum dot light-emitting diodes," Adv. Mater. 34, 2106276 (2022).
- T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, and E. Jang, "Efficient and stable blue quantum dot light-emitting diode," Nature 586, 358-389 (2020). https://doi.org/10.1038/d41586-020-02847-8
- X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization," Adv. Mater. 29, 1607022 (2017).
- L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures," Nat. Photonics 5, 543-548 (2011). https://doi.org/10.1038/nphoton.2011.171
- C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993). https://doi.org/10.1021/ja00072a025
- E. Goldman, A. Clapp, G. Anderson, H. Uyeda, J. Mauro, I. Medintz, and H. mattoussi, "Multiplexed toxin analysis using four colors of quantum dot fluororeagents," Anal. Chem. 76, 684-688 (2004). https://doi.org/10.1021/ac035083r
- S. H. Lee, Y. Kim, H. Jang, J. H. Min, J. Oh, E. Jang, and D. Kim, "The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots," Nanoscale 11, 23251-23258 (2019). https://doi.org/10.1039/c9nr06847c
- S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996). https://doi.org/10.1103/PhysRevLett.77.3873
- Y.-S. Park, J. Lim, and V. I. Klimov, "Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths," Nat. Mater. 18, 249-255 (2019). https://doi.org/10.1038/s41563-018-0254-7
- R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, "Realizing Rec. 2020 color gamut with quantum dot displays," Opt. Express 23, 23680-23693 (2015). https://doi.org/10.1364/OE.23.023680
- C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Peng, and Y. Cao, "Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices," ACS Appl. Mater. Interfaces 8, 26162-26168 (2016). https://doi.org/10.1021/acsami.6b08679
- S. Lee, M.-J. Choi, G. Sharma, M. Biondi, B. Chen, S.-W. Baek, A. M. Najarian, M. Vafaie, J. Wicks, L. K. Sagar, S. Hoogland, F. P. G. D. Arquer, O. Voznyy, and E. H. Sargent, "Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices," Nat. Commnun. 11, 4814 (2020).
- H. van de Stedt and J. M. Muller, "Multimirror Fabry-Perot interferometers," J. Opt. Soc. Am. A 2, 1363-1370 (1985). https://doi.org/10.1364/josaa.2.001363
- I. Jung, H. Kim, S. Oh, H. Kwak, S. Ju, M. Kim, J. H. Jung, H. W. Baac, J. G. Ok, and K.-T. Lee, "Understanding a spectral response in a metal-dielectric-metal cavity structure: The role of constituent metals," J. Opt. Laser Technol. 158, 108772 (2023).
- J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications, 1st ed. (Routledge, USA, 1989).
- C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, "Compact multilayer film structure for angle insensitive color filtering," Sci. Rep. 5, 9285 (2015).
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd ed. (John Wiley & Sons, USA, 2019), Vol. 2, Chapter 7.
- M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, UK, 1999).
- J. H. Han, D. Kim, T.-W. Lee, Y. Jeon, H. S. Lee, and K. C. Choi, "Color purifying optical nanothin film for three primary colors in optoelectronics," ACS Photonics 5, 3322-3330 (2018). https://doi.org/10.1021/acsphotonics.8b00540
- J. H. Han, D. Kim, T.-W. Lee, E. G. Jeong, H. S. Lee, and K. C. Choi, "Ultra-high-resolution organic light-emitting diodes with color conversion electrode," ACS Photonics 5, 1891-1897 (2018). https://doi.org/10.1021/acsphotonics.8b00230
- J. H. Han, D.-Y. Kim, D. Kim, and K. C. Choi, "Highly conductive and flexible color filter electrode using multilayer film structure," Sci. Rep. 6, 29341 (2016).
- J. H. Han, D.-H. Kim, and K. C. Choi, "Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes," Opt. Express 23, 19863-19873 (2015). https://doi.org/10.1364/OE.23.019863
- D. Zhang, T. Huang, and L. Duan, "Emerging self-emissive technologies for flexible displays," Adv. Mater. 32, 1902391 (2019).
- Y.-J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometer sensors," Opt. Fiber Technol. 12, 227-237 (2006). https://doi.org/10.1016/j.yofte.2006.03.004
- T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot Interferometer and its sensor applications," IEEE Trans. Microw. Theory Tech. 30, 1612-1621 (1982). https://doi.org/10.1109/TMTT.1982.1131298
- M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, "Dynamic response of a Fabry-Perot interferometer," J. Opt. Soc. Am. B 16, 523-532 (1999). https://doi.org/10.1364/JOSAB.16.000523
- M. Pisani and M. Zucco, "Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer," Opt. Express 17, 8319-8331 (2009). https://doi.org/10.1364/OE.17.008319
- Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013). https://doi.org/10.1002/adom.201200021
- Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photonics 2, 133-138 (2015).
- D. P. Kulikova, A. A. Dobronosova, V. V. Kornienko, I. A. Nechepurenko, A. S. Baburin, E. V. Sergeev, E. S. Lotkov, I. A. Rodionov, A. V. Baryshev, and A. V. Dorofeenko, "Optical properties of tungsten trioxide, palladium, and platinum thin films for functional nanostructures engineering," Opt. Express 28, 32049-32060 (2020). https://doi.org/10.1364/oe.405403
- P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, "Temperature dependence of the optical properties of Au, Ag, and Cu," J. Phys. F: Met. Phys. 6, 1583 (1976).
- S. Kim and J.-L. Lee, "Design of dielectric/metal/dielectric transparent electrodes for flexible electronics," J. Photonics Energy 2, 021215 (2012).
- Ansys Canada Ltd., "Lumerical FDTD Solution," (Ansys Canada Ltd., Published date: Jul. 29, 2019), https://www.lumerical.com/product/fdtd (Accessed date: Aug. 5, 2019).