DOI QR코드

DOI QR Code

Dual Fabry-Perot Interferometer to Improve the Color Purity of Displays

  • Keun Soo Shin (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Jun Yong Kim (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Yun Seon Do (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 투고 : 2022.12.22
  • 심사 : 2023.03.08
  • 발행 : 2023.04.25

초록

We propose a dual Fabry-Perot interferometer (DFPI) structure that combines two Fabry-Perot interferometers. The structure is designed to have spectral peaks in the red, green, and blue regions simultaneously, to be applicable to R, G, and B subpixels without any patterning process. The optimized structure has been fabricated on a glass substrate using a thermal evaporation technique. When the DFPI structure was attached to the quantum-dot color-conversion layer, the full width at half maximum values of the green and red spectra decreased by 47.29% and 51.07% respectively. According to CIE 1931 color space, the DFPI showed a 37.66% wider color gamut than the standard RGB color coordinate. Thus it was experimentally proven that the proposed DFPI structure improved color purity. This DFPI structure will be useful in realizing a display with high color purity.

키워드

과제정보

Technology Innovation Program (20016350, Development of ultra high quality with life longtime of color converting material, process and module for extremely largearea micro LED display) funded by the Ministry of Trade Industry & energy (MOTIE, Korea); Alchemist Project grant funded by Korea Evaluation Institute of Industrial Technology (KEIT) and the Korea Government (MOTIE) (Project Number: 1415179744, 20019169); Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20224000000150).

참고문헌

  1. S. S. Coe, "Quantum dot development," Nat. Photonics 3, 315-316 (2009). https://doi.org/10.1038/nphoton.2009.83
  2. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, "Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications," Adv. Mater 31, 1804294 (2019).
  3. M. K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays," npj Flex Electron. 2, 10 (2018).
  4. T. Lee, B. J. Kim, H. Lee, D. Hahm, W. K. Bae, J. Lim, and J. Kwak, "Bright and stable quantum dot light-emitting diodes," Adv. Mater. 34, 2106276 (2022).
  5. T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, and E. Jang, "Efficient and stable blue quantum dot light-emitting diode," Nature 586, 358-389 (2020). https://doi.org/10.1038/d41586-020-02847-8
  6. X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization," Adv. Mater. 29, 1607022 (2017).
  7. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures," Nat. Photonics 5, 543-548 (2011). https://doi.org/10.1038/nphoton.2011.171
  8. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993). https://doi.org/10.1021/ja00072a025
  9. E. Goldman, A. Clapp, G. Anderson, H. Uyeda, J. Mauro, I. Medintz, and H. mattoussi, "Multiplexed toxin analysis using four colors of quantum dot fluororeagents," Anal. Chem. 76, 684-688 (2004). https://doi.org/10.1021/ac035083r
  10. S. H. Lee, Y. Kim, H. Jang, J. H. Min, J. Oh, E. Jang, and D. Kim, "The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots," Nanoscale 11, 23251-23258 (2019). https://doi.org/10.1039/c9nr06847c
  11. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996). https://doi.org/10.1103/PhysRevLett.77.3873
  12. Y.-S. Park, J. Lim, and V. I. Klimov, "Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths," Nat. Mater. 18, 249-255 (2019). https://doi.org/10.1038/s41563-018-0254-7
  13. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, "Realizing Rec. 2020 color gamut with quantum dot displays," Opt. Express 23, 23680-23693 (2015). https://doi.org/10.1364/OE.23.023680
  14. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Peng, and Y. Cao, "Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices," ACS Appl. Mater. Interfaces 8, 26162-26168 (2016). https://doi.org/10.1021/acsami.6b08679
  15. S. Lee, M.-J. Choi, G. Sharma, M. Biondi, B. Chen, S.-W. Baek, A. M. Najarian, M. Vafaie, J. Wicks, L. K. Sagar, S. Hoogland, F. P. G. D. Arquer, O. Voznyy, and E. H. Sargent, "Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices," Nat. Commnun. 11, 4814 (2020).
  16. H. van de Stedt and J. M. Muller, "Multimirror Fabry-Perot interferometers," J. Opt. Soc. Am. A 2, 1363-1370 (1985). https://doi.org/10.1364/josaa.2.001363
  17. I. Jung, H. Kim, S. Oh, H. Kwak, S. Ju, M. Kim, J. H. Jung, H. W. Baac, J. G. Ok, and K.-T. Lee, "Understanding a spectral response in a metal-dielectric-metal cavity structure: The role of constituent metals," J. Opt. Laser Technol. 158, 108772 (2023).
  18. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications, 1st ed. (Routledge, USA, 1989).
  19. C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, "Compact multilayer film structure for angle insensitive color filtering," Sci. Rep. 5, 9285 (2015).
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd ed. (John Wiley & Sons, USA, 2019), Vol. 2, Chapter 7.
  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, UK, 1999).
  22. J. H. Han, D. Kim, T.-W. Lee, Y. Jeon, H. S. Lee, and K. C. Choi, "Color purifying optical nanothin film for three primary colors in optoelectronics," ACS Photonics 5, 3322-3330 (2018). https://doi.org/10.1021/acsphotonics.8b00540
  23. J. H. Han, D. Kim, T.-W. Lee, E. G. Jeong, H. S. Lee, and K. C. Choi, "Ultra-high-resolution organic light-emitting diodes with color conversion electrode," ACS Photonics 5, 1891-1897 (2018). https://doi.org/10.1021/acsphotonics.8b00230
  24. J. H. Han, D.-Y. Kim, D. Kim, and K. C. Choi, "Highly conductive and flexible color filter electrode using multilayer film structure," Sci. Rep. 6, 29341 (2016).
  25. J. H. Han, D.-H. Kim, and K. C. Choi, "Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes," Opt. Express 23, 19863-19873 (2015). https://doi.org/10.1364/OE.23.019863
  26. D. Zhang, T. Huang, and L. Duan, "Emerging self-emissive technologies for flexible displays," Adv. Mater. 32, 1902391 (2019).
  27. Y.-J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometer sensors," Opt. Fiber Technol. 12, 227-237 (2006). https://doi.org/10.1016/j.yofte.2006.03.004
  28. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot Interferometer and its sensor applications," IEEE Trans. Microw. Theory Tech. 30, 1612-1621 (1982). https://doi.org/10.1109/TMTT.1982.1131298
  29. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, "Dynamic response of a Fabry-Perot interferometer," J. Opt. Soc. Am. B 16, 523-532 (1999). https://doi.org/10.1364/JOSAB.16.000523
  30. M. Pisani and M. Zucco, "Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer," Opt. Express 17, 8319-8331 (2009). https://doi.org/10.1364/OE.17.008319
  31. Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013). https://doi.org/10.1002/adom.201200021
  32. Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photonics 2, 133-138 (2015).
  33. D. P. Kulikova, A. A. Dobronosova, V. V. Kornienko, I. A. Nechepurenko, A. S. Baburin, E. V. Sergeev, E. S. Lotkov, I. A. Rodionov, A. V. Baryshev, and A. V. Dorofeenko, "Optical properties of tungsten trioxide, palladium, and platinum thin films for functional nanostructures engineering," Opt. Express 28, 32049-32060 (2020). https://doi.org/10.1364/oe.405403
  34. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, "Temperature dependence of the optical properties of Au, Ag, and Cu," J. Phys. F: Met. Phys. 6, 1583 (1976).
  35. S. Kim and J.-L. Lee, "Design of dielectric/metal/dielectric transparent electrodes for flexible electronics," J. Photonics Energy 2, 021215 (2012).
  36. Ansys Canada Ltd., "Lumerical FDTD Solution," (Ansys Canada Ltd., Published date: Jul. 29, 2019), https://www.lumerical.com/product/fdtd (Accessed date: Aug. 5, 2019).