Acknowledgement
본 연구는 2022년 과학기술정보통신부 주요 사업인 "핵생성 이전단계 연구를 포함한 탄산염광물의 생성 반응경로 규명"의 연구지원으로 수행되었습니다.
References
- E. Y. Kwon and Y. K. Cho, The impact of the oceanic biological pump on atmospheric CO2 and its link to climate change, J. Korean Soc. Oceanogr. 18, 266-276 (2013).
- R. A. Feely, C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero, Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362-366 (2004). https://doi.org/10.1126/science.1097329
- F. Joos, T. L. Frolicher, M. Steinacher, and G.-K. Plattner, Ocean Acidification, J.-P. Gattuso and L. Hansson, 1st ed., 272-290, Oxford University Press, Oxford, England (2011).
- N. Gruber, C. Hauri, Z. Lachkar, D. Loher, T. L. Frolicher, and G.-K. Plattner, Rapid progression of ocean acidification in the california current system, Science, 337, 220-223 (2012). https://doi.org/10.1126/science.1216773
- J. Zhang, C. Dong, Y. Sun, and J. Yu, Mechanism of magnesium's influence on calcium carbonate crystallization: Kinetically controlled multistep crystallization, Cryst. Res. Technol., 53, 1800075 (2018).
- J. Zhang, X. Zhou, C. Dong, Y. Sun, and J. Yu, Investigation of amorphous calcium carbonate's formation under high concentration of magnesium: The prenucleation cluster pathway, J. Cryst. Growth, 494, 8-16 (2018). https://doi.org/10.1016/j.jcrysgro.2018.05.001
- D. Gebauer, A. Volkel, and H. Colfen, Stable prenucleation calcium carbonate clusters, Science, 322, 1819-1822 (2008). https://doi.org/10.1126/science.1164271
- D. Gebauer and H. Colfen, Prenucleation clusters and non-classical nucleation, Nano Today, 6, 564-584 (2011). https://doi.org/10.1016/j.nantod.2011.10.005
- D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H. Colfen, Pre-nucleation clusters as solute precursors in crystallisation, Chem. Soc. Rev., 43, 2348-2371 (2014). https://doi.org/10.1039/c3cs60451a
- E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, and N. A. J. M. Sommerdijk, The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM, Science, 323, 1455-1458 (2009). https://doi.org/10.1126/science.1169434
- M. Kellermeier, A. Picker, A. Kempter, H. Colfen, and D. Gebauer, A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory, Adv. Mater., 26, 752-757 (2014). https://doi.org/10.1002/adma.201303643
- A. Verch, M. Antonietti, and H. Colfen, Mixed calcium-magnesium pre-nucleation clusters enrich calcium, Z. Kristallogr. Cryst. Mater., 227, 718-722 (2012). https://doi.org/10.1524/zkri.2012.1529
- Y. Politi, D. R. Batchelor, P. Zaslansky, B. F. Chmelka, J. C. Weaver, I. Sagi, S. Weiner, and L. Addadi, Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure-function investigation, Chem. Mater., 22, 161-166 (2010). https://doi.org/10.1021/cm902674h
- P. Raiteri, R. Demichelis, and J. D. Gale, Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation, J. Phys. Chem. C, 119, 24447-24458 (2015). https://doi.org/10.1021/acs.jpcc.5b07532
- J. W. Morse, Q. Wang, and M. Y. Tsio, Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater, Geology, 25, 85-87 (1997). https://doi.org/10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2
- S. Fermani, B. N. Dzakula, M. Reggi, G. Falini, and D. Kralj, Effects of magnesium and temperature control on aragonite crystal aggregation and morphology, CrystEngComm, 19, 2451-2455 (2017). https://doi.org/10.1039/C7CE00197E
- R. M. Santos, P. Ceulemans, and T. V. Gerven, Synthesis of pure aragonite by sonochemical mineral carbonation, Chem. Eng. Res. Des., 90, 715-725 (2012). https://doi.org/10.1016/j.cherd.2011.11.022
- T. Chen, A. Neville, and M. Yuan, Influence of Mg2+ on CaCO3 formation-bulk precipitation and surface deposition, Chem. Eng. Sci., 61, 5318-5327 (2006). https://doi.org/10.1016/j.ces.2006.04.007
- R. G. Compton and C. A. Brown, The inhibition of calcite dissolution/precipitation: Mg2+ cations, J. Colloid Interface Sci., 165, 445-449 (1994). https://doi.org/10.1006/jcis.1994.1248
- M. Boon, W. D. A. Rickard, A. L. Rohl, and F. Jones, Stabilization of aragonite: Role of Mg2+ and other impurity ions, Cryst. Growth Des., 20, 5006-5017 (2020). https://doi.org/10.1021/acs.cgd.0c00152
- G. W. Akin and J. V. Lagerwerff, Calcium carbonate equilibria in solutions open to the air. II. Enhanced solubility of CaCO3 in the presence of Mg2+ and SO42-, Geochim. Cosmochim. Acta, 29, 353-360 (1965). https://doi.org/10.1016/0016-7037(65)90026-8
- A. Korchef and M. Touaibi, Effect of pH and temperature on calcium carbonate precipitation by CO2 removal from iron-rich water, Water Environ. J., 34, 331-341 (2020). https://doi.org/10.1111/wej.12467
- H. L. Lee, Ion-selective electrodes, The Magazine of the IEIE, 13, 36-43 (1986).
- G. Dimeski, T. Badrick, and A. St John, Ion selective electrodes (ISEs) and interferences-A review, Clin. Chim. Acta, 411, 309-317 (2010). https://doi.org/10.1016/j.cca.2009.12.005
- L. Brecevic and A. E. Nielsen, Solubility of amorphous calcium carbonate, J. Cryst. Growth, 98, 504-510 (1989). https://doi.org/10.1016/0022-0248(89)90168-1
- Z. Hu and Y. Deng, Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants, J. Colloid Interface Sci., 266, 359-365 (2003). https://doi.org/10.1016/S0021-9797(03)00699-4