References
- J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, OJEU, 5-43 (2011).
- V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf., 17, 13-26 (1991). https://doi.org/10.1016/0379-7112(91)90010-V
- V. Babrauskas and S. J. Grayson, Heat Release in Fires, Elsevier, London, UK, 210-217 (1992).
- CBUF Report, Fire safety of upholstered furniture - The final report on the CBUF research programme, Sundstrom, B., Ed., EUR 16477 EN, European commission, measurements and testing report, Contract No. 3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995).
- M, M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use this information for fire hazard assessment, Fire Technol., 33, 291-315 (1997). https://doi.org/10.1023/A:1015384109580
- M. Janssens, Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth, Doctoral's thesis, University of Gent, Belgium (1991).
- ISO 5660-1, "Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
- M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
- H. C. Tran, Experimental data on wood materials, In: V. Babrauskas and S. J. Grayson (eds.). Heat Release in Fires, 357-372, Elsevier Applied Science, New Yok, USA (1992).
- M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
- M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
- B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
- L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
- Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
- Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021). https://doi.org/10.14478/ACE.2020.1103
- W. T. Simpso, Drying and control of moisture content and dimensional changes, In: Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA, 1-21 (1987).
- Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022).
- J. Pohleven, M. D. Burnard, and A. Kutnar, Volatile organic compounds emitted from untreated and thermally modified wood-A review, Wood Fiber Sci., 51, 231-254 (2019). https://doi.org/10.22382/wfs-2019-023
- J. D. Dehaan, Kirk's fire investigation, 5th ed., 84-112, Pearson, London, England (2002).
- V. Babrauskas, R. D. Peacock, Heat release rate: the single most important variable in fire hazard, Fire Saf., 18, 255-272 (1992). https://doi.org/10.1016/0379-7112(92)90019-9
- M. M. Hirschler, Use of heat release rate to predict whether individual furnishings would cause self propagating fires, Fire Saf., 32, 273-296 (1999). https://doi.org/10.1016/S0379-7112(98)00037-X
- M. M. Hirschler, Heat release testing of consumer products, J. ASTM Int., 6, 1-25 (2009). https://doi.org/10.1520/JAI102258
- F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Thermal Characterization of Polymeric Materials, Academic Press, New York, USA (1981).
- J. G. Quintire, Principles of fire behavior, Delmar Cengage Learning, New York, USA (1998).
- Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
- B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007). https://doi.org/10.1002/fam.949
- V. Babrauskas, Development of the cone calorimeter - A bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984).
- C. Jiao, X. Chen, and J. Zhang, Synergistic effects of F2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033