Acknowledgement
This work was funded by the Rural Development Administration (Grants PJ015053) of Republic of Korea.
References
- F. Wang, D. Ouyang, Z. Zhou, S. J. Page, D. Liu, and X. Zhao, Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage, J. Energy Chem., 57, 247-280 (2021). https://doi.org/10.1016/j.jechem.2020.08.060
- Y. H. Chan, S. K. Loh, B. L. F. Chin, C. L. Yiin, B. S. How, K. W. Cheah, and S. S. Lam, Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects, Chem. Eng. J., 397, 125406 (2020).
- X. Yang, K. Kang, L. Qiu, L. Zhao, and R. Sun, Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches, Renew. Energ., 146, 1691-1699 (2020). https://doi.org/10.1016/j.renene.2019.07.148
- Z. Liu, A. Quek, S. K. Hoekman, and R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel, 103, 943-949 (2013). https://doi.org/10.1016/j.fuel.2012.07.069
- O. Oginni, and K. Singh, Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars, J. Environ. Chem. Eng., 8, 104169 (2020).
- X. Cui, S. Fang, Y. Yao, T. Li, Q. Ni. X. Yang, and Z. He, Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar, Sci. Total Environ., 562, 517-525 (2016). https://doi.org/10.1016/j.scitotenv.2016.03.248
- C. Setter, F. T. M. Silva, M. R. Assis, C. H. Ataide, P. F. Trugilho, and T. J. P. Oliveira, Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions, Fuel, 261, 116420 (2020).
- J. Cheng, S. C. Hu, G. T. Sun, Z. C. Geng, and M. Q. Zhu, The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process, Ind. Crops Prod., 170, 113690 (2021).
- M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, and Y. S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-33 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
- F. R. Oliveira, A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal, Environmental application of biochar: Current status and perspectives, Bioresour. Technol., 246, 110-122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122
- H. S. Oh, J. S. Chang, Comparison of cation anion dye removal characteristics between kelp-based magnetic biochar and pine-based magnetic biochar, J. Korean Soc. Environ. Eng., 42, 308-318 (2020). https://doi.org/10.4491/ksee.2020.42.6.308
- O. uner, and Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Microporous Mesoporous Mater., 268, 225-234 (2018). https://doi.org/10.1016/j.micromeso.2018.04.037
- L. G. J. M. A. Segal, J. J. Creely, A. E. Martin Jr, and C. M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003
- E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951). https://doi.org/10.1021/ja01145a126
- N. R. Khalili, M. Campbell, G. Sandi, and J. Golas, Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon, 38, 1905-1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9
- D. Pandey, A. Daverey, K. Dutta, V. K. Yata, K. Arunachalam, Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study, Environ. Technol. Innov., 25, 102200 (2022).
- Y. Xue, C. Wang, Z. Hu, Y. Zhou, Y. Xiao, and T. Wang, Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb (II), Cd (II) from aqueous solution, Waste Manage., 89, 48-56 (2019). https://doi.org/10.1016/j.wasman.2019.03.047
- H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781-1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
- K. Wang, J. Zhang, B. H. Shanks, and R. C. Brown, The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation, Appl. Energy, 148, 115-120 (2015). https://doi.org/10.1016/j.apenergy.2015.03.034
- H. H. Muigai, U. Bordoloi, R. Hussain, K. Ravi, V. S. Moholkar, and P. Kalita, A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications, Int. J. Energy Res., 45, 4765-4781 (2021). https://doi.org/10.1002/er.6092
- X. Cao, K. S. Ro, J. A. Libra, C. I. Kammann, I. Lima, N. Berge, and J. Mao, Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars, J. Agric. Food Chem., 61, 9401-9411 (2013). https://doi.org/10.1021/jf402345k
- T. Wang, H. Liu, C. Duan, R. Xu, Z. Zhang, D. She, and J. Zheng, The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications, Materials, 13, 3391 (2020).
- Z. Wang, L. Han, K. Sun, J. Jin, K. S. Ro, J. A. Libra, and B. Xing, Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures, Chemosphere, 144, 285-291 (2016). https://doi.org/10.1016/j.chemosphere.2015.08.042
- M. Hassan, Y. Liu, R. Naidu, S. J. Parikh, J. Du, F. Qi, and I. R. Willett, Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis, Sci. Total Environ., 744, 140714 (2020).
- S. E. Ban, E. J. Lee, D. J. Lim, I. S. Kim, and J. W. Lee, Evaluation of sulfuric acid-pretreated biomass-derived biochar characteristics and its diazinon adsorption mechanism, Bioresour. Technol., 348, 126828 (2022).
- B. C. Chaves Fernandes, K. Ferreira Mendes, A. F. Dias Junior, V. P. da Silva Caldeira, T. M. da Silva Teofilo, T. Severo Silva, and D. Valadao Silva, Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar, Materials, 13, 5841 (2020).
- Y. Wang, T. Hu, X. Zhao, S. Wang, and G. Xing, Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times, Energy Fuels, 27, 5890-5899 (2013). https://doi.org/10.1021/ef400972z
- M. Keiluweit, P. S. Nico, M. G. Johnson, and M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44, 1247-1253 (2010). https://doi.org/10.1021/es9031419
- P. Kim, A. Johnson, C. W. Edmunds, M. Radosevich, F. Vogt, T. G. Rials, and N. Labbe, Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis, Energy Fuels, 25, 4693-4703 (2011). https://doi.org/10.1021/ef200915s
- P. Pariyar, K. Kumari, M. K. Jain, and P. S. Jadhao, Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application, Sci. Total Environ., 713, 136433 (2020).
- T. Wang, H. Liu, C. Duan, R. Xu, Z. Zhang, D. She, and J. Zheng, The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications, Materials, 13, 3391 (2020).
- Y. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, and L. Yang, Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, Chem. Eng. J., 240, 574-578 (2014). https://doi.org/10.1016/j.cej.2013.10.081
- T. S. Jo, J. W. Choi, and O. K. Lee, Physicochemical changes of woody charcoals prepared by different carbonizing temperature, J. Korean Wood Sci. Technol., 34, 53-60 (2007).
- S. K. Das, G. K. Ghosh, R. K. Avasthe, and K. Sinha, Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks, J. Environ. Manage., 278, 111501 (2021).
- M. J. Antal and M. Gronli, The art, science, and technology of charcoal production, Ind. Eng. Chem. Res., 42, 1619-1640 (2003). https://doi.org/10.1021/ie0207919
- Y. Yao, B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, and L. Yang, Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential, Bioresour. Technol., 102, 6273-6278 (2011). https://doi.org/10.1016/j.biortech.2011.03.006
- H. Lyu, B. Gao, F. He, A. R. Zimmerman, C. Ding, J. Tang, and J. C. Crittenden, Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue, Chem. Eng. J., 335, 110-119 (2018). https://doi.org/10.1016/j.cej.2017.10.130
- S. Karagoz, T. Tay, S. Ucar, and M. Erdem, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresour. Technol., 99, 6214-6222 2008). https://doi.org/10.1016/j.biortech.2007.12.019
- H. Li, X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen, and L. Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072
- B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, and H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review, J. Anal. Appl. Pyrolysis, 155, 105081 (2021).
- H. Zhang, B. Peng, Q. Liu, C. Wu, and Z. Li, Preparation of porous biochar from heavy bio-oil for adsorption of methylene blue in wastewater, Fuel Process. Technol., 238, 107485 (2022).
- S. W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, and Y. S. Yun, Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste, J. Hazard. Mater., 138, 370-377 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.060
- H. Nath, A. Saikia, P. J. Goutam, B. K. Saikia, and N. Saikia, Removal of methylene blue from water using okra (Abelmoschus esculentus L.) mucilage modified biochar, Bioresour. Technol. Reports, 14, 100689 (2021).
- Y. Wang, Y. Zhang, S. Li, W. Zhong, and W. Wei, Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid, J. Mol. Liq., 268, 658-666 (2018). https://doi.org/10.1016/j.molliq.2018.07.085
- D. A. G. Sumalinog, S. C. Capareda, and M. D. G. de Luna, Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes, J. Environ. Manage., 210, 255-262 (2018). https://doi.org/10.1016/j.jenvman.2018.01.010
- X. Yao, L. Ji, J. Guo, S. Ge, W. Lu, L. Cai, and H. Zhang, Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption, Bioresour. Technol., 302, 122842 (2020).