Acknowledgement
본 논문은 한국연구재단 4단계 BK21 사업과 선도연구센터 사업(2021R1A5A6002853)으로부터 지원받은 연구임.
References
- Z. Angeles-Olvera, A. Crespo-Yapur, O. Rodriguez, J. L. Cholula-Diaz, L. M. Martinez, and M. Videa, Nickel-based electrocatalysts for water electrolysis, Energies, 15, 1609 (2022).
- S.-Y. Bae, J. Mahmood, I.-Y. Jeon, and J.-B. Baek, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction, Nanoscale Horiz., 5, 43-56 (2020). https://doi.org/10.1039/c9nh00485h
- C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, and X. W. Du, Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution, Adv. Energy Mater., 9, 1803913 (2019).
- Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, and Z. Zhao, Eutectoid-structured wc/w2c heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials, Nano Energy, 68, 104335 (2020).
- M. Gong and H. Dai, A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res., 8, 23-39 (2015). https://doi.org/10.1007/s12274-014-0591-z
- M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced ni-fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc., 135, 8452-8455 (2013). https://doi.org/10.1021/ja4027715
- P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, Rechargeable zinc-air batteries: A promising way to green energy, J. Mater. Chem. A, 5, 7651-7666 (2017). https://doi.org/10.1039/C7TA01693J
- Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chem. Soc. Rev., 44, 2060-2086 (2015). https://doi.org/10.1039/C4CS00470A
- X. Kong, K. Xu, C. Zhang, J. Dai, S. Norooz Oliaee, L. Li, X. Zeng, C. Wu, and Z. Peng, Free-standing two-dimensional Ru nanosheets with high activity toward water splitting, ACS Catal., 6, 1487-1492 (2016). https://doi.org/10.1021/acscatal.5b02730
- Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, and H. Dai, Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts, J. Am. Chem. Soc., 134, 3517-3523 (2012). https://doi.org/10.1021/ja210924t
- X. F. Lu, L. Yu, and X. W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts, Sci. Adv., 5, eaav6009 (2019).
- A. Radwan, H. Jin, D. He, and S. Mu, Design engineering, synthesis protocols, and energy applications of mof-derived electrocatalysts, Nano-Micro Lett., 13, 132 (2021).
- M. A. Rahman, X. Wang, and C. Wen, High energy density metal-air batteries: A review, J. Electrochem. Soc., 160, A1759 (2013).
- C. Rosler, A. Aijaz, S. Turner, M. Filippousi, A. Shahabi, W. Xia, G. Van Tendeloo, M. Muhler, and R. A. Fischer, Hollow Zn/Co zeolitic imidazolate framework (ZIF) and yolk-shell metal@Zn/Co ZIF nanostructures, Chem. Eur. J., 22, 3304-3311 (2016). https://doi.org/10.1002/chem.201503619
- F. J. Sarabia, P. Sebastian-Pascual, M. T. Koper, V. Climent, and J. M. Feliu, Effect of the interfacial water structure on the hydrogen evolution reaction on Pt (111) modified with different nickel hydroxide coverages in alkaline media, ACS Appl. Mater. Interfaces, 11, 613-623 (2018).
- R. Sharma, Y. Wang, F. Li, J. Chamier, and S. M. Andersen, Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis, ACS Omega, 4, 15711-15720 (2019).
- K. Talukdar, S. Delgado, T. Lagarteira, P. Gazdzicki, and K. A. Friedrich, Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers, J. Power Sources, 427, 309-317 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.094
- L. Tian, Y. Liu, C. He, S. Tang, J. Li, and Z. Li, Hollow heterostructured nanocatalysts for boosting electrocatalytic water splitting, Chem. Rec., 23, e202200213 (2022).
- L. C. Varanda, C. G. Souza, D. A. Moraes, H. R. Neves, J. B. SOUZA, M. F. Silva, R. A. Bini, R. F. Albers, T. L. Silva, and W. Beck, Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review, An. Acad. Bras. Cienc., 91, e20181180 (2019).
- J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater., 28, 215-230 (2016). https://doi.org/10.1002/adma.201502696
- T. Wang, X. Wang, Y. Liu, J. Zheng, and X. Li, A highly efficient and stable biphasic nanocrystalline Ni-Mo-N catalyst for hydrogen evolution in both acidic and alkaline electrolytes, Nano Energy, 22, 111-119 (2016). https://doi.org/10.1016/j.nanoen.2016.02.023
- J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, and Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene, Angew. Chem. Int. Ed., 127, 11039-11043 (2015). https://doi.org/10.1002/ange.201504242
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, and C. Zhi, Dendrites in Zn-based batteries, Adv. Mater., 32, 2001854 (2020).
- F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, and R. Palkovits, Stability and deactivation of OER electrocatalysts: A review, J. Energy Chem., 69, 301-329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
- K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, and W. Yang, Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell, Chem. Commun., 52, 11803-11806 (2016). https://doi.org/10.1039/C6CC04951F
- K. Zhu, X. Zhu, and W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts, Angew. Chem. Int. Ed., 58, 1252-1265 (2019). https://doi.org/10.1002/anie.201802923
- X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44, 5148-5180 (2015). https://doi.org/10.1039/C4CS00448E