Acknowledgement
본 연구는 한국철도기술연구원 주요사업 연구비 지원으로 수행되었습니다(PK2303F2).
References
- M. Musarra-Pizzo, R. Pennisi, I. Ben-Amor, G. Mandalari, and M.T. Sciortino, Antiviral activity exerted by natural products against human viruses. Viruses, 13, 828 (2021).
- L.-T. Lin, W.-C. Hsu, and C.-C. Lin, Antiviral natural products and herbal medicines, J. Tradit. Complement. Med., 4, 24-35 (2014). https://doi.org/10.4103/2225-4110.124335
- A. da S. Antonio, L. S. M. Wiedemann, and V. F. Veiga-Junior, Natural products' role against COVID-19, RSC Adv., 10, 23379-23393 (2020). https://doi.org/10.1039/d0ra03774e
- A, Frediansyah, F. Sofyantoro, S. Alhumaid, A. Al Mutair, H. Albayat, H. I. Altaweil, H. M. Al-Afghani, A. A. AlRamadhan, M. R. AlGhazal, S. A. Turkistani, A. A. Abuzaid, and A. A. Rabaan, Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A Review, Molecules, 27, 4305 (2022).
- K. Hwang, Antiviral activity of chitosan, chitin, and polysaccharides derived from seaweed, J. Chitin Chitosan, 25, 93-104 (2020). https://doi.org/10.17642/jcc.25.2.6
- Y. Jeong, L. T. Thuy, S. H. Ki, S. Ko, S. Kim, W. K. Cho, J. S. Choi, and S. M. Kang, Multipurpose antifouling coating of solid surfaces with the marine-derived polymer fucoidan, Macromol. Biosci. 18, 1800137 (2018).
- S. Kim, J.-M. Moon, J. S. Choi, W. K. Cho, and S. M. Kang, Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications, Adv. Fuct. Mater., 26, 4099-4105 (2016). https://doi.org/10.1002/adfm.201600613
- B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020).
- S. Ko, J.-Y. Lee, and D. Park, Recent progress of antibacterial coatings on solid substrates through antifouling polymers, Appl. Chem. Eng., 32, 371-378 (2021). https://doi.org/10.14478/ACE.2021.1048
- T. P. T. Cushnie and A. J. Lamb, Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 26, 343-356 (2005). https://doi.org/10.1016/j.ijantimicag.2005.09.002
- H. J. Jeong, S. H. Xuan, B. R. Song, S. L. Lee, Y. J. Lee, and S. N. Park, Antimicrobial and antioxidant activities of Perilla frutescens var. acuta extract and its fraction and their component analyses, Appl. Chem. Eng., 29, 716-725 (2018). https://doi.org/10.14478/ACE.2018.1077
- J.-H. Kwon, T.-Y. Kim, J.-K. Kim, and J.-Y. Kim, Characteristics of Opuntia monacantha Haw. for the functional raw material production, Appl. Chem. Eng., 28, 252-256 (2017). https://doi.org/10.14478/ACE.2017.1013
- M. J. Khubeiz, G. Mansour, and B. Zahraa, Antibacterial and phytochemical investigation of Thuja orientalis (L.) leaves essential oil from Syria, Int. J. Curr. Pharm. Res., 7, 243-247 (2016).
- H.-Y. Ahn, S.-J. Heo, M.-J. Kang, J.-H. Lee, J.-Y. Cha, and Y.-S. Cho, Antioxidative activity and chemical characteristics of leaf and fruit extracts from Thuja orientalis, J. Life Sci., 21, 746-752 (2011). https://doi.org/10.5352/JLS.2011.21.5.746
- J.-H. Mo and S.-J. Oh, Tyrosinase inhibitory activity and melanin production inhibitory activity of extract of Thuja orientalic, Kor. J. Aesthet. Cosmetol., 13, 189-194 (2015).
- T. H. Youm and H. B. Lim, Antimicrobial activities of organic extracts from fruit of Thuja orientalis L., J. Medicinal Crop Sci., 18, 315-322 (2010).
- R. K. Jain and S.C Garg, Antimicrobial activity of the essential oil of Thuja orientalis L, Anc. Sci. Life, 16, 186-189 (1997).
- S. N. Sah, S. Regmi, and M. K. Tamang, Antibacterial effects of Thuja leaves extract, J. Medicinal Crop Sci., 18, 315-322 (2010).
- K.-J. Kang and J.-S. Kim, Effects of hinokitiol extract of Thuja orientalis on shelf-life of bread, J. Korean Soc. Food Sci. Nutr., 29, 624-628 (2000).
- J.-N. Won, S.-Y. Lee, D. Song, and H. Poo, Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. J. Microbiol. Biotechnol., 23, 125-130 (2013). https://doi.org/10.4014/jmb.1210.10074
- E. K. F. Elbeshehy, E. M. R. Metwali, and O. A. Almaghrabi, Antiviral activity of Thuja orientalis extracts against watermelon mosaic virus (WMV) on Citrullus lanatus, Saudi J. Biol. Sci., 22, 211-219 (2015) https://doi.org/10.1016/j.sjbs.2014.09.012
- H. T. Hoang, J. S. Park, S. H. Kim, J.-Y. Moon, and Y.-C. Lee, Microwave-assisted Dendropanax morbifera extract for cosmetic applications, Antioxidants, 11, 998 (2022).
- D. Pinto, A. M. Silva, V. Freitas, A. Vallverdu-Queralt, C. DelerueMatos, and F. Rodrigues, Microwave-assisted extraction as a green technology approach to recover polyphenols from Castanea sativa Shells, ACS Food Sci. Technol., 1, 229-241 (2021). https://doi.org/10.1021/acsfoodscitech.0c00055
- S. Ko, J.-Y. Lee, and D. Park, Antibacterial and antiviral activities of multi-coating polyester textiles, Appl. Chem. Eng., 33, 444-450 (2022). https://doi.org/10.14478/ACE.2022.1083
- X. Chen, Y. He, and Y. Deng, Chemical composition, pharmacological, and toxicological effects of betal nut, Evid.-based Complement. Altern. Med., 2021, 1808081 (2021).
- M. Suda, K. Takanashi, M. Katoh, K. Matsumoto, K, Kawaguchi, S. Kawahara, H. Fujii, and H. Makabe, Synthesis of arecatannin A1 from dimeric epicatechin electrophile, Nat. Prod. Commun., 10, 959-962 (2015).
- I. T. Kusumoto, T. Nakabayashi, H. Kida, H. Miyashiro, M. Hattori, T. Namba, K. Shimotohno, Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease, Phytother. Res., 9, 180-184 (1995). https://doi.org/10.1002/ptr.2650090305
- B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020).
- J. J. Hilliard, H. M. Krause, J. I. Bernstein, J. A. Fernandez, V. Nguyen, K. A. Ohemeng, and J. F. Barrett, A comparison of active site binding of 4-quinolones and novel flavone gyrase inhibitors to DNA gyrase. Adv. Exp. Med. Biol., 390, 59-67 (1995).
- A. Wube, J.-D. Guzman, A. Hufner, C. Hochfellner, M. Blunder, R. Bauer, S. Gibbons, S. Bhakta, and F. Bucar, Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones, Molecules, 17, 8217-8240 (2012). https://doi.org/10.3390/molecules17078217
- S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, and S. Soetjipto, Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study, Preprints.org, 2020030226 (2020).
- J. C. Stockert, R. W. Horobin, L. L. Colombo, and A. BlazquezCastro, Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives, Acta Histochem., 120, 159-167 (2018). https://doi.org/10.1016/j.acthis.2018.02.005
- T. Flerlage, D. F. Boyd, V. Meliopoulos, P. G. Thomas, and S. Schultz-Cherry, Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract, Nat. Rev. Microbiol., 19, 425-441 (2021). https://doi.org/10.1038/s41579-021-00542-7
- C. Cermelli, A. Cuoghi, M. Scuri, C. Bettua, R. Neglia, A, Ardizzoni, E. Blasi, T. Iannitti, and B. Palmieri, In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid, Virol. J., 8, 141 (2011).