References
- G. Bulut, u. Yenial, E. Emiroglu, and A. A. Sirkeci, Arsenic removal from aqueous solution using pyrite, J. Cleaner Prod., 84, 526-532 (2014). https://doi.org/10.1016/j.jclepro.2013.08.018
- C. K. Jain and R. D. Singh, Technological options for the removal of arsenic with special reference to South East Asia, J. Environ. Manage., 107, 1-18 (2012). https://doi.org/10.1016/j.jenvman.2012.04.016
- J. S. Ahn, C.-M. Chon, H.-S. Moon, and K.-W. Kim, Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems, Water Res., 37, 2478-2488 (2003). https://doi.org/10.1016/S0043-1354(02)00637-1
- S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism, Chem. Eng. J., 243, 14-23 (2014). https://doi.org/10.1016/j.cej.2013.12.049
- Y. Glocheux, A. B. Albadarin, C. Mangwandi, E. Stewart, and G. M. Walker, Production of porous aluminium and iron sulphated oxyhydroxides using industrial grade coagulants for optimised arsenic removal from groundwater, J. Ind. Eng. Chem., 25, 56-66 (2015). https://doi.org/10.1016/j.jiec.2014.10.013
- S. Liu, S. Kang, G. Wang, H. Zhao, and W. Cai, Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances, J. Colloid Interface Sci., 458, 94-102 (2015). https://doi.org/10.1016/j.jcis.2015.07.038
- M. F. Hughes, Arsenic toxicity and potential mechanisms of action, Toxicol. Lett., 133, 1-16 (2002). https://doi.org/10.1016/S0378-4274(02)00084-X
- D. Mohan and C. U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents-A critical review, J. Hazard. Mater., 142, 1-53 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006
- A. Sarkar and B. Paul, The global menace of arsenic and its conventional remediation - A critical review, Chemosphere, 158, 37-49 (2016). https://doi.org/10.1016/j.chemosphere.2016.05.043
- EPA, Technologies and Costs for Removal of Arsenic from Drinking Water, 268, Washington DC, USA (2000).
- X. Guo and F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater, Environ. Sci. Technol, 39, 6808-6818 (2005). https://doi.org/10.1021/es048080k
- Lalhmunsiama, D. Tiwari, and S.-M. Lee, Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water, Environ. Eng. Res., 17, 41-48 (2012). https://doi.org/10.4491/eer.2012.17.1.041
- G. Wendimu, F. Zewge, and E. Mulugeta, Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions, J. Water Process Eng., 16, 123-131 (2017). https://doi.org/10.1016/j.jwpe.2016.12.012
- A. O .A. Tuna, E. Ozdemir, E. B. Simsek, and U. Beker, Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions, Chem. Eng. J., 223, 116-128 (2013). https://doi.org/10.1016/j.cej.2013.02.096
- A. Bortun, M. Bortun, J. Pardini, S. A. Khainakov, and R. Garcia, Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water, Mater. Res. Bull., 45, 142-148 (2010). https://doi.org/10.1016/j.materresbull.2009.09.030
- Z. Fang, K. Zhang, X. Zhang, and B. Pan, Enhanced water decontamination from methylated arsenic by utilizing ultra-small hydrated zirconium oxides encapsulated inside gel-type anion exchanger, Chem. Eng. J., 430, 132641 (2022).
- H. Tokuyama, E. Kitamura, and Y. Seida, Development of zirconia nanoparticle-loaded hydrogel for arsenic adsorption and sensing, React. Funct. Polym., 146, 104427 (2020).
- R. Sandoval, A. M. Cooper, K. Aymar, A. Jain, and K. Hristovski, Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles, J. Hazard. Mater., 193, 296-303 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.061
- S. A. Chaudhry, T. A. Khan, and I. Ali, Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies, Egypt. J. Petrol., 26, 553-563 (2017). https://doi.org/10.1016/j.ejpe.2016.11.006
- Q. Guo, Y. Li, L.-W. Zheng, X.-Y. Wei, Y. Xu, Y.-W. Shen, K.-G. Zhang, and C.-G. Yuan, Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability, J. Environ. Sci., 128, 213-223 (2023). https://doi.org/10.1016/j.jes.2022.08.002
- S. Lou, B. Liu, Y. Qin, Y. Zeng, W. Zhang, and L. Zhang, Enhanced removal of As(III) and As(V) from water by a novel zirconium-chitosan modified spherical sodium alginate composite, Inter. J. Biol. Macromol., 176, 304-314 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.077
- B. Seynnaeve, K. Folens, C. Krishnaraj, I. K. Ilic, C. Liedel, J. Schmidt, A. Verberckmoes, G. Du Laing, K. Leus, and P. Van Der Voort, Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water, J. Hazard. Mater., 413, 125356 (2021).
- Y. Yin, T. Zhou, H. Luo, J. Geng, W. Yu, and Z. Jiang, Adsorption of arsenic by activated charcoal coated zirconium-manganese nanocomposite: Performance and mechanism, Colloids Surf. A, 575, 318-328 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.093
- M. Kumar, A. M. Isloor, T. Somasekhara Rao, A. F. Ismail, R. Farnood, and P. M. G. Nambissan, Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide, Chem. Eng. J., 393, 124367 (2020).
- G. Sethia, H. A. Patel, R. R. Pawar, and H. C. Bajaj, Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen, Appl. Clay Sci., 91-92, 63-69 (2014). https://doi.org/10.1016/j.clay.2014.01.019
- Lalhmunsiama, S. M. Lee, S. S. Choi, and D. Tiwari, Simultaneous removal of Hg(II) and phenol using functionalized activated carbon derived from areca nut waste, Metals, 7, 248 (2017).
- X. Lv, Y. Zhang, W. Fu, J. Cao, J. Zhang, H. Ma, and G. Jiang, Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal, J. Colloid Interface Sci., 506, 633-643 (2017). https://doi.org/10.1016/j.jcis.2017.07.024
- Lalhmunsiama, R. R. Pawar, S.-M. Hong, K. J. Jin, and S.-M. Lee, Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions, J. Mol. Liq., 240, 497-503 (2017). https://doi.org/10.1016/j.molliq.2017.05.086
- S. S. Silva, R. A. S. Ferreira, L. Fu, L. D. Carlos, J. F. Mano, R. L. Reis, and J. Rocha, Functional nanostructured chitosan-siloxane hybrids, J. Mater. Chem., 15, 3952-3961 (2005). https://doi.org/10.1039/b505875a
- A. Adamczuk and D. Kolodynska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274, 200-212 (2015). https://doi.org/10.1016/j.cej.2015.03.088
- S. M. Lee, Lalhmunsiama, and D. Tiwari, Sericite in the remediation of Cd(II)- and Mn(II)-contaminated waters: Batch and column studies, Environ. Sci. Pollut. Res., 21, 3686-3696 (2013). https://doi.org/10.1007/s11356-013-2310-9
- R. Malsawmdawngzela, Lalhmunsiama, D. Tiwari, and S. Lee, Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water, Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-04506-z.
- H. Cui, Y. Su, Q. Li, S. Gao, and J. K. Shang, Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling, Water Res., 47, 6258-6268 (2013). https://doi.org/10.1016/j.watres.2013.07.040
- J. Zhou, Y. Liu, B. Li, W. Huang, J. Qin, H. Li, and G. Chen, Hydrous zirconium oxide modified biochar for in situ remediation of arsenic contaminated agricultural soil, J. Environ. Chem. Eng., 10, 108360 (2022).
- R. R. Pawar, Lalhmunsiama, M. Kim, J.-G. Kim, S.-M. Hong, S. Y. Sawant, and S. M. Lee, Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads, Appl. Clay Sci., 162, 339-350 (2018). https://doi.org/10.1016/j.clay.2018.06.014
- M. Kilic, C. Kirbiyik, O. Cepeliogullar, and A. E. Putun, Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis, Appl. Surf. Sci., 283, 856-862 (2013). https://doi.org/10.1016/j.apsusc.2013.07.033
- K. Y. Foo, and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156, 2-10 (2010). https://doi.org/10.1016/j.cej.2009.09.013
- Y. Bentahar, C. Hurel, K. Draoui, S. Khairoun, and N. Marmier, Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution, Appl. Clay Sci., 119, 385-392 (2016). https://doi.org/10.1016/j.clay.2015.11.008
- R. Mukhopadhyay, K. M. Manjaiah, S. Datta, R. Yadav, and B. Sarkar, Inorganically modified clay minerals: Preparation, characterization, and arsenic adsorption in contaminated water and soil, Appl. Clay Sci., 147, 1-10 (2017). https://doi.org/10.1016/j.clay.2017.07.017
- K.-Y. Shin, J.-Y. Hong, and J. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study, J. Hazard. Mater., 190, 36-44 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.102
- J. O. Aremu, M. Lay, and G. Glasgow, Kinetic and isotherm studies on adsorption of arsenic using silica based catalytic media, J. Water Process Eng., 32, 100939 (2019).
- S. M. Lee, Lalhmunsiama, Thanhmingliana, and D. Tiwari, Porous hybrid materials in the remediation of water contaminated with As(III) and As(V), Chem. Eng. J., 270, 496-507 (2015). https://doi.org/10.1016/j.cej.2015.02.053