DOI QR코드

DOI QR Code

No more tears from surgical site infections in interventional pain management

  • Seungjin, Lim (Division of Infectious Diseases, Department of Internal Medicine, Pusan National University Yangsan Hospital) ;
  • Yeong-Min, Yoo (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University) ;
  • Kyung-Hoon, Kim (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University)
  • Received : 2022.12.02
  • Accepted : 2022.12.16
  • Published : 2023.01.01

Abstract

As the field of interventional pain management (IPM) grows, the risk of surgical site infections (SSIs) is increasing. SSI is defined as an infection of the incision or organ/space that occurs within one month after operation or three months after implantation. It is also common to find patients with suspected infection in an outpatient clinic. The most frequent IPM procedures are performed in the spine. Even though primary pyogenic spondylodiscitis via hematogenous spread is the most common type among spinal infections, secondary spinal infections from direct inoculation should be monitored after IPM procedures. Various preventive guidelines for SSI have been published. Cefazolin, followed by vancomycin, is the most commonly used surgical antibiotic prophylaxis in IPM. Diagnosis of SSI is confirmed by purulent discharge, isolation of causative organisms, pain/tenderness, swelling, redness, or heat, or diagnosis by a surgeon or attending physician. Inflammatory markers include traditional (C-reactive protein, erythrocyte sedimentation rate, and white blood cell count) and novel (procalcitonin, serum amyloid A, and presepsin) markers. Empirical antibiotic therapy is defined as the initial administration of antibiotics within at least 24 hours prior to the results of blood culture and antibiotic susceptibility testing. Definitive antibiotic therapy is initiated based on the above culture and testing. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria infections appears to be superior to monotherapy in mortality with the risk of increasing antibiotic resistance rates. The never-ending war between bacterial resistance and new antibiotics is continuing. This article reviews prevention, diagnosis, and treatment of infection in pain medicine.

Keywords

Acknowledgement

This study was supported by a research grant from Pusan National University Yangsan Hospital in 2022.

References

  1. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017; 152: 784-91. Erratum in: JAMA Surg 2017; 152: 803.  https://doi.org/10.1001/jamasurg.2017.0904
  2. European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections and prevention indicators in European hospitals. HAI-Net SSI protocol, version 2.2 [Internet]. Stockholm: ECDC; 2017. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-SSI-protocol-v2.2.pdf. 
  3. Skube SJ, Hu Z, Arsoniadis EG, Simon GJ, Wick EC, Ko CY, et al. Characterizing surgical site infection signals in clinical notes. Stud Health Technol Inform 2017; 245: 955-9. 
  4. World Health Organization. Global guidelines for the prevention of surgical site infection, second edition [Internet]. Geneva: World Health Organization; 2018. Available at: https://apps.who.int/iris/bitstream/handle/10665/277399/9789241550475-eng.pdf?sequence=1&isAllowed=y. 
  5. Sepkowitz KA. One hundred years of Salvarsan. N Engl J Med 2011; 365: 291-3.  https://doi.org/10.1056/NEJMp1105345
  6. Williams KJ. The introduction of 'chemotherapy' using arsphenamine - the first magic bullet. J R Soc Med 2009; 102: 343-8.  https://doi.org/10.1258/jrsm.2009.09k036
  7. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.  https://doi.org/10.3389/fmicb.2010.00134
  8. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol 2019; 51: 72-80.  https://doi.org/10.1016/j.mib.2019.10.008
  9. Singh SB, Young K, Silver LL. What is an "ideal" antibiotic? Discovery challenges and path forward. Biochem Pharmacol 2017; 133: 63-73.  https://doi.org/10.1016/j.bcp.2017.01.003
  10. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33: 300-5.  https://doi.org/10.4103/joacp.JOACP_349_15
  11. Tsantes AG, Papadopoulos DV, Vrioni G, Sioutis S, Sapkas G, Benzakour A, et al. Spinal infections: an update. Microorganisms 2020; 8: 476.  https://doi.org/10.3390/microorganisms8040476
  12. Buckman SA, Turnbull IR, Mazuski JE. Empiric antibiotics for sepsis. Surg Infect (Larchmt) 2018; 19: 147-54.  https://doi.org/10.1089/sur.2017.282
  13. Ahmed A, Azim A, Gurjar M, Baronia AK. Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med 2014; 18: 310-4.  https://doi.org/10.4103/0972-5229.132495
  14. Bassetti M, Righi E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr Opin Crit Care 2015; 21: 402-11.  https://doi.org/10.1097/MCC.0000000000000235
  15. Schmid A, Wolfensberger A, Nemeth J, Schreiber PW, Sax H, Kuster SP. Monotherapy versus combination therapy for multidrug-resistant Gramnegative infections: systematic review and metaanalysis. Sci Rep 2019; 9: 15290.  https://doi.org/10.1038/s41598-019-51711-x
  16. Shaffer WO, Baisden JL, Fernand R, Matz PG; North American Spine Society. An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine J 2013; 13: 1387-92.  https://doi.org/10.1016/j.spinee.2013.06.030
  17. Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, et al. Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology 2004; 100: 1582-94.  https://doi.org/10.1097/00000542-200406000-00034
  18. Ierano C, Nankervis JM, James R, Rajkhowa A, Peel T, Thursky K. Surgical antimicrobial prophylaxis. Aust Prescr 2017; 40: 225-9.  https://doi.org/10.18773/austprescr.2017.073
  19. Shawky Abdelgawaad A, El Sadik MHM, Hassan KM, El-Sharkawi M. Perioperative antibiotic prophylaxis in spinal surgery. SICOT J 2021; 7: 31.  https://doi.org/10.1051/sicotj/2021029
  20. Alexander JW, Solomkin JS, Edwards MJ. Updated recommendations for control of surgical site infections. Ann Surg 2011; 253: 1082-93.  https://doi.org/10.1097/SLA.0b013e31821175f8
  21. Schaison G, Graninger W, Bouza E. Teicoplanin in the treatment of serious infection. J Chemother 2000; 12 Suppl 5: 26-33.  https://doi.org/10.1080/1120009X.2000.11782315
  22. Schwartz RH, Southerland W, Urits I, Kaye AD, Viswanath O, Yazdi C. Successful reimplantation of spinal cord stimulator one year after device removal due to infection. Surg J (N Y) 2021; 7: e11-3.  https://doi.org/10.1055/s-0040-1722179
  23. Deer TR, Provenzano DA, Hanes M, Pope JE, Thomson SJ, Russo MA, et al. The Neurostimulation Appropriateness Consensus Committee (NACC) recommendations for infection prevention and management. Neuromodulation 2017; 20: 31-50. Erratum in: Neuromodulation 2017; 20: 516.  https://doi.org/10.1111/ner.12635
  24. Mok JM, Pekmezci M, Piper SL, Boyd E, Berven SH, Burch S, et al. Use of C-reactive protein after spinal surgery: comparison with erythrocyte sedimentation rate as predictor of early postoperative infectious complications. Spine (Phila Pa 1976) 2008; 33: 415-21.  https://doi.org/10.1097/BRS.0b013e318163f9ee
  25. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-12. Erratum in: J Clin Invest 2003; 112: 299. 
  26. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004; 279: 48487-90.  https://doi.org/10.1074/jbc.R400025200
  27. Du Clos TW. Function of C-reactive protein. Ann Med 2000; 32: 274-8.  https://doi.org/10.3109/07853890009011772
  28. Hoeller S, Roch PJ, Weiser L, Hubert J, Lehmann W, Saul D. C-reactive protein in spinal surgery: more predictive than prehistoric. Eur Spine J 2021; 30: 1261-9.  https://doi.org/10.1007/s00586-021-06782-8
  29. Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 2016; 115: 317-21. 
  30. Zheng S, Wang Z, Qin S, Chen JT. Usefulness of inflammatory markers and clinical manifestation for an earlier method to diagnosis surgical site infection after spinal surgery. Int Orthop 2020; 44: 2211-9.  https://doi.org/10.1007/s00264-020-04567-0
  31. Jonsson B, Soderholm R, Stromqvist B. Erythrocyte sedimentation rate after lumbar spine surgery. Spine (Phila Pa 1976) 1991; 16: 1049-50.  https://doi.org/10.1097/00007632-199109000-00006
  32. Zare A, Sabahi M, Safari H, Kiani A, Schmidt MH, Arjipour M. Spinal surgery and subsequent ESR and WBC changes pattern: a single center prospective study. Korean J Neurotrauma 2021; 17: 136-47.  https://doi.org/10.13004/kjnt.2021.17.e33
  33. Takahashi J, Shono Y, Hirabayashi H, Kamimura M, Nakagawa H, Ebara S, et al. Usefulness of white blood cell differential for early diagnosis of surgical wound infection following spinal instrumentation surgery. Spine (Phila Pa 1976) 2006; 31: 1020-5.  https://doi.org/10.1097/01.brs.0000214895.67956.60
  34. Kraft CN, Kruger T, Westhoff J, Luring C, Weber O, Wirtz DC, et al. CRP and leukocyte-count after lumbar spine surgery: fusion vs. nucleotomy. Acta Orthop 2011; 82: 489-93.  https://doi.org/10.3109/17453674.2011.588854
  35. Choi MK, Kim SB, Kim KD, Ament JD. Sequential changes of plasma C-reactive protein, erythrocyte sedimentation rate and white blood cell count in spine surgery: comparison between lumbar open discectomy and posterior lumbar interbody fusion. J Korean Neurosurg Soc 2014; 56: 218-23.  https://doi.org/10.3340/jkns.2014.56.3.218
  36. Aljabi Y, Manca A, Ryan J, Elshawarby A. Value of procalcitonin as a marker of surgical site infection following spinal surgery. Surgeon 2019; 17: 97-101.  https://doi.org/10.1016/j.surge.2018.05.006
  37. Nie H, Jiang D, Ou Y, Quan Z, Hao J, Bai C, et al. Procalcitonin as an early predictor of postoperative infectious complications in patients with acute traumatic spinal cord injury. Spinal Cord 2011; 49: 715-20.  https://doi.org/10.1038/sc.2010.190
  38. Deguchi M, Shinjo R, Yoshioka Y, Seki H. The usefulness of serum amyloid A as a postoperative inflammatory marker after posterior lumbar interbody fusion. J Bone Joint Surg Br 2010; 92: 555-9.  https://doi.org/10.1302/0301-620X.92B4.22807
  39. Sack GH Jr. Serum amyloid A - a review. Mol Med 2018; 24: 46.  https://doi.org/10.1186/s10020-018-0047-0
  40. Chahoud J, Kanafani Z, Kanj SS. Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne) 2014; 1: 7.  https://doi.org/10.3389/fmed.2014.00007
  41. Amanai E, Nakai K, Saito J, Hashiba E, Miura T, Morohashi H, et al. Usefulness of presepsin for the early detection of infectious complications after elective colorectal surgery, compared with C-reactive protein and procalcitonin. Sci Rep 2022; 12: 3960.  https://doi.org/10.1038/s41598-022-06613-w
  42. Lee S, Song J, Park DW, Seok H, Ahn S, Kim J, et al. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: a prospective observational study according to the Sepsis-3 definitions. BMC Infect Dis 2022; 22: 8.  https://doi.org/10.1186/s12879-021-07012-8
  43. Giavarina D, Carta M. Determination of reference interval for presepsin, an early marker for sepsis. Biochem Med (Zagreb) 2015; 25: 64-8.  https://doi.org/10.11613/BM.2015.007
  44. Zhu X, Li K, Zheng J, Xia G, Jiang F, Liu H, et al. Usage of procalcitonin and sCD14-ST as diagnostic markers for postoperative spinal infection. J Orthop Traumatol 2022; 23: 25.  https://doi.org/10.1186/s10195-022-00644-9
  45. Koakutsu T, Sato T, Aizawa T, Itoi E, Kushimoto S. Postoperative changes in presepsin level and values predictive of surgical site infection after spinal surgery: a single-center, prospective observational study. Spine (Phila Pa 1976) 2018; 43: 578-84.  https://doi.org/10.1097/BRS.0000000000002376
  46. Zou Q, Wen W, Zhang XC. Presepsin as a novel sepsis biomarker. World J Emerg Med 2014; 5: 16-9.  https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.002
  47. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann Intern Med 2019; 171: 547-54.  https://doi.org/10.7326/m19-1696
  48. Opota O, Croxatto A, Prod'hom G, Greub G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 2015; 21: 313-22.  https://doi.org/10.1016/j.cmi.2015.01.003
  49. Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel) 2019; 9: 49.  https://doi.org/10.3390/diagnostics9020049
  50. Centers for Disease Control and Prevention (CDC). How antimicrobial resistance happens [Internet]. Washington, DC: CDC; 2020. Available at: https://www.cdc.gov/drugresistance/about/how-resistance-happens.html. 
  51. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49: 1749-55.  https://doi.org/10.1086/647952
  52. Lewis JS II, Kirn TJ Jr, Weinstein MP, Limbago B, Bobenchik AM, Mathers AJ, et al.; Clinical and Laboratory Standards Institute (CLSI). M100: performance standards for antimicrobial susceptibility testing [Internet]. 32nd ed. Malvern (PA): CLSI; 2022. Available at: https://clsi.org/standards/products/microbiology/documents/m100/. 
  53. European Committee on Antimicrobial Susceptibility Testing (EUCAST), European Society of Clinical Microbiology and Infectious Diseases. Rationale documents from EUCAST [Internet]. Copenhagen: EUCAST; 2022. Available at: http://eucast.org/publications-and-documents/rd. 
  54. Humphries RM, Abbott AN, Hindler JA. Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J Clin Microbiol 2019; 57: e00203-19.  https://doi.org/10.1128/JCM.00203-19
  55. Brown D, Macgowan A. Harmonization of antimicrobial susceptibility testing breakpoints in Europe: implications for reporting intermediate susceptibility. J Antimicrob Chemother 2010; 65: 183-5.  https://doi.org/10.1093/jac/dkp432
  56. Prinzi A. Updating breakpoints in antimicrobial susceptibility testing [Internet]. Washington, DC: American Society for Microbiology; 2022. Available at: https://asm.org/Articles/2022/February/Updating-Breakpoints-in-Antimicrobial-Susceptibili. 
  57. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 Suppl 1: 5-16. Erratum in: J Antimicrob Chemother 2002; 49: 1049.  https://doi.org/10.1093/jac/dkf083
  58. Saito A, Inamatsu T, Okada J, Oguri T, Kanno H, Kusano N, et al. Clinical breakpoints in pulmonary infections and sepsis: new antimicrobial agents and supplemental information for some agents already released. J Infect Chemother 1999; 5: 223-6.  https://doi.org/10.1007/s101560050041
  59. Tulane University School of Medicine. MIC and time- vs. concentration-dependent killing [Internet]. New Orleans (LA): Tulane University School of Medicine; 2021. Available at: https://tmedweb.tulane.edu/pharmwiki/doku.php/time-_concentration-dependent_killing. 
  60. Choi EJ, Ri HS, Park H, Kim HJ, Yoon JU, Byeon GJ. Unexpected extrusion of the implantable pulse generator of the spinal cord stimulator - a case report. Anesth Pain Med (Seoul) 2021; 16: 103-7.  https://doi.org/10.17085/apm.20054
  61. Yazdi C, Finn R. Management of intrathecal pump site infection in a patient with metastatic breast cancer without the removal of the system, a case report. J Anesth Intensive Care Med 2017; 1: 555568.  https://doi.org/10.19080/JAICM.2017.01.555568
  62. Falowski SM, Provenzano DA, Xia Y, Doth AH. Spinal cord stimulation infection rate and risk factors: results from a United States payer database. Neuromodulation 2019; 22: 179-89.  https://doi.org/10.1111/ner.12843
  63. Bendel MA, O'Brien T, Hoelzer BC, Deer TR, Pittelkow TP, Costandi S, et al. Spinal cord stimulator related infections: findings from a multicenter retrospective analysis of 2737 implants. Neuromodulation 2017; 20: 553-7.  https://doi.org/10.1111/ner.12636
  64. Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, et al. Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation 2017; 20: 558-62.  https://doi.org/10.1111/ner.12609
  65. Loubet P, Burdet C, Vindrios W, Grall N, Wolff M, Yazdanpanah Y, et al. Cefazolin versus anti-staphylococcal penicillins for treatment of methicillinsusceptible Staphylococcus aureus bacteraemia: a narrative review. Clin Microbiol Infect 2018; 24: 125-32.  https://doi.org/10.1016/j.cmi.2017.07.003
  66. Brook I. Inoculum effect. Rev Infect Dis 1989; 11: 361-8.  https://doi.org/10.1093/clinids/11.3.361
  67. Miller WR, Seas C, Carvajal LP, Diaz L, Echeverri AM, Ferro C, et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect Dis 2018; 5: ofy123.  https://doi.org/10.1093/ofid/ofy123
  68. Lenhard JR, Bulman ZP. Inoculum effect of β-lactam antibiotics. J Antimicrob Chemother 2019; 74: 2825-43.  https://doi.org/10.1093/jac/dkz226
  69. Carmona-Fontaine C, Xavier JB. Altruistic cell death and collective drug resistance. Mol Syst Biol 2012; 8: 627.  https://doi.org/10.1038/msb.2012.60
  70. Bamberger DM, Boyd SE. Management of Staphylococcus aureus infections. Am Fam Physician 2005; 72: 2474-81. 
  71. Warner NS, Schaefer KK, Eldrige JS, Lamer TJ, Pingree MJ, Bendel MA, et al. Peripheral nerve stimulation and clinical outcomes: a retrospective case series. Pain Pract 2021; 21: 411-8.  https://doi.org/10.1111/papr.12968
  72. Ilfeld BM, Gabriel RA, Saulino MF, Chae J, Peckham PH, Grant SA, et al. Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract 2017; 17: 753-62.  https://doi.org/10.1111/papr.12523
  73. Delhaas EM, Huygen FJPM. Complications associated with intrathecal drug delivery systems. BJA Educ 2020; 20: 51-7.  https://doi.org/10.1016/j.bjae.2019.11.002
  74. Malheiro L, Gomes A, Barbosa P, Santos L, Sarmento A. Infectious complications of intrathecal drug administration systems for spasticity and chronic pain: 145 patients from a tertiary care center. Neuromodulation 2015; 18: 421-7.  https://doi.org/10.1111/ner.12265
  75. Ruppen W, Derry S, McQuay HJ, Moore RA. Infection rates associated with epidural indwelling catheters for seven days or longer: systematic review and meta-analysis. BMC Palliat Care 2007; 6: 3.  https://doi.org/10.1186/1472-684X-6-3
  76. Harde M, Bhadade R, Iyer H, Jatale A, Tiwatne S. A comparative study of epidural catheter colonization and infection in Intensive Care Unit and wards in a Tertiary Care Public Hospital. Indian J Crit Care Med 2016; 20: 109-13.  https://doi.org/10.4103/0972-5229.175943
  77. Brown MM, Horswill AR. Staphylococcus epidermidis-skin friend or foe? PLoS Pathog 2020; 16: e1009026.  https://doi.org/10.1371/journal.ppat.1009026
  78. Cau L, Williams MR, Butcher AM, Nakatsuji T, Kavanaugh JS, Cheng JY, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol 2021; 147: 955-66. e16.  https://doi.org/10.1016/j.jaci.2020.06.024
  79. Otto M. Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol 2009; 7: 555-67.  https://doi.org/10.1038/nrmicro2182
  80. Kumar G, Kumar N, Taneja A, Kaleekal T, Tarima S, McGinley E, et al.; Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest 2011; 140: 1223-31.  https://doi.org/10.1378/chest.11-0352
  81. de Jong PC, Kansen PJ. A comparison of epidural catheters with or without subcutaneous injection ports for treatment of cancer pain. Anesth Analg 1994; 78: 94-100.  https://doi.org/10.1213/00000539-199401000-00017
  82. Shim J, Seo TS, Song MG, Cha IH, Kim JS, Choi CW, et al. Incidence and risk factors of infectious complications related to implantable venousaccess ports. Korean J Radiol 2014; 15: 494-500.  https://doi.org/10.3348/kjr.2014.15.4.494
  83. Kim KH, Seo HJ, Abdi S, Huh B. All about pain pharmacology: what pain physicians should know. Korean J Pain 2020; 33: 108-20.  https://doi.org/10.3344/kjp.2020.33.2.108
  84. Park JW, Park SM, Lee HJ, Lee CK, Chang BS, Kim H. Infection following percutaneous vertebral augmentation with polymethylmethacrylate. Arch Osteoporos 2018; 13: 47.  https://doi.org/10.1007/s11657-018-0468-y
  85. Abdelrahman H, Siam AE, Shawky A, Ezzati A, Boehm H. Infection after vertebroplasty or kyphoplasty. A series of nine cases and review of literature. Spine J 2013; 13: 1809-17.  https://doi.org/10.1016/j.spinee.2013.05.053
  86. Hernandez L, Munoz ME, Goni I, Gurruchaga M. New injectable and radiopaque antibiotic loaded acrylic bone cements. J Biomed Mater Res B Appl Biomater 2008; 87: 312-20.  https://doi.org/10.1002/jbm.b.31105
  87. Pellegrini AV, Suardi V. Antibiotics and cement: what I need to know? Hip Int 2020; 30(1_suppl): 48-53.  https://doi.org/10.1177/1120700020915463
  88. Kim WS, Kim KH. Percutaneous osteoplasty for painful bony lesions: a technical survey. Korean J Pain 2021; 34: 375-93.  https://doi.org/10.3344/kjp.2021.34.4.375
  89. Ross JJ. Septic arthritis of native joints. Infect Dis Clin North Am 2017; 31: 203-18.  https://doi.org/10.1016/j.idc.2017.01.001
  90. Garcia-Arias M, Balsa A, Mola EM. Septic arthritis. Best Pract Res Clin Rheumatol 2011; 25: 407-21.  https://doi.org/10.1016/j.berh.2011.02.001
  91. Horowitz DL, Katzap E, Horowitz S, Barilla-LaBarca ML. Approach to septic arthritis. Am Fam Physician 2011; 84: 653-60. 
  92. Long B, Koyfman A, Gottlieb M. Evaluation and management of septic arthritis and its mimics in the emergency department. West J Emerg Med 2019; 20: 331-41.  https://doi.org/10.5811/westjem.2018.10.40974
  93. Elsissy JG, Liu JN, Wilton PJ, Nwachuku I, Gowd AK, Amin NH. Bacterial septic arthritis of the adult native knee joint: a review. JBJS Rev 2020; 8: e0059.  https://doi.org/10.2106/jbjs.rvw.19.00059
  94. Stutz G, Gachter A. [Diagnosis and stage-related therapy of joint infections]. Unfallchirurg 2001; 104: 682-6. German.  https://doi.org/10.1007/s001130170068
  95. Balato G, de Matteo V, Ascione T, de Giovanni R, Marano E, Rizzo M, et al. Management of septic arthritis of the hip joint in adults. A systematic review of the literature. BMC Musculoskelet Disord 2021; 22(Suppl 2): 1006.  https://doi.org/10.1186/s12891-021-04843-z
  96. Jiang JJ, Piponov HI, Mass DP, Angeles JG, Shi LL. Septic arthritis of the shoulder: a comparison of treatment methods. J Am Acad Orthop Surg 2017; 25: e175-84.  https://doi.org/10.5435/jaaos-d-16-00103
  97. Movassaghi K, Wakefield C, Bohl DD, Lee S, Lin J, Holmes GB Jr, et al. Septic arthritis of the native ankle. JBJS Rev 2019; 7: e6.  https://doi.org/10.2106/JBJS.RVW.18.00080
  98. Lener S, Hartmann S, Barbagallo GMV, Certo F, Thome C, Tschugg A. Management of spinal infection: a review of the literature. Acta Neurochir (Wien) 2018; 160: 487-96.  https://doi.org/10.1007/s00701-018-3467-2
  99. Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J 2013; 22: 2787-99.  https://doi.org/10.1007/s00586-013-2850-1
  100. Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother 2010; 65 Suppl 3: iii11-24.  https://doi.org/10.1093/jac/dkq303
  101. Choi EJ, Kim SY, Kim HG, Shon HS, Kim TK, Kim KH. Percutaneous endoscopic debridement and drainage with four different approach methods for the treatment of spinal infection. Pain Physician 2017; 20: E933-40.  https://doi.org/10.36076/ppj.20.5.E933
  102. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. Asian Spine J 2014; 8: 216-23.  https://doi.org/10.4184/asj.2014.8.2.216
  103. Raff AB, Kroshinsky D. Cellulitis: a review. JAMA 2016; 316: 325-37.  https://doi.org/10.1001/jama.2016.8825
  104. Sullivan T, de Barra E. Diagnosis and management of cellulitis. Clin Med (Lond) 2018; 18: 160-3.  https://doi.org/10.7861/clinmedicine.18-2-160
  105. Rrapi R, Chand S, Kroshinsky D. Cellulitis: a review of pathogenesis, diagnosis, and management. Med Clin North Am 2021; 105: 723-35.  https://doi.org/10.1016/j.mcna.2021.04.009
  106. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59: e10-52. Erratum in: Clin Infect Dis 2015; 60: 1448.  https://doi.org/10.1093/cid/civ113
  107. Naucler P, Huttner A, van Werkhoven CH, Singer M, Tattevin P, Einav S, et al. Impact of time to antibiotic therapy on clinical outcome in patients with bacterial infections in the emergency department: implications for antimicrobial stewardship. Clin Microbiol Infect 2021; 27: 175-81.  https://doi.org/10.1016/j.cmi.2020.02.032
  108. Lee MS, Oh JY, Kang CI, Kim ES, Park S, Rhee CK, et al. Guideline for antibiotic use in adults with community-acquired pneumonia. Infect Chemother 2018; 50: 160-98.  https://doi.org/10.3947/ic.2018.50.2.160
  109. Eisen DP, Hamilton E, Bodilsen J, Koster-Rasmussen R, Stockdale AJ, Miner J, et al. Longer than 2 hours to antibiotics is associated with doubling of mortality in a multinational community-acquired bacterial meningitis cohort. Sci Rep 2022; 12: 672.  https://doi.org/10.1038/s41598-021-04349-7
  110. Nakatani S, Ohara T, Ashihara K, Izumi C, Iwanaga S, Eishi K, et al. JCS 2017 guideline on prevention and treatment of infective endocarditis. Circ J 2019; 83: 1767-809.  https://doi.org/10.1253/circj.cj-19-0549
  111. Oshima T, Kodama Y, Takahashi W, Hayashi Y, Iwase S, Kurita T, et al. Empiric antibiotic therapy for severe sepsis and septic shock. Surg Infect (Larchmt) 2016; 17: 210-6.  https://doi.org/10.1089/sur.2014.096
  112. Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc 2011; 86: 156-67.  https://doi.org/10.4065/mcp.2010.0639
  113. NHS Greater Glasgow and Clyde. Infection management guidelines empirical antibiotic therapy in adults. [Internet]. Glasgow: NHS Greater Glasgow and Clyde; 2020. Available at: https://handbook.ggcmedicines.org.uk/media/1133/2021-infection-management-poster.pdf. 
  114. NHS Grampian Antimicrobial Management Team. Empirical antimicrobial therapy prescribing guidance for adults. Version 6. [Internet]. Aberdeen: NHS Grampian Antimicrobial Management Team; 2018. Available at: https://www.nhsgrampian.org/globalassets/foidocument/foi-public-documents1---all-documents/IMG_EmpAposter.pdf. 
  115. Beveridge TJ. Use of the gram stain in microbiology. Biotech Histochem 2001; 76: 111-8.  https://doi.org/10.1080/bih.76.3.111.118
  116. Popescu A, Doyle RJ. The Gram stain after more than a century. Biotech Histochem 1996; 71: 145-51.  https://doi.org/10.3109/10520299609117151
  117. Coico R. Gram staining. Curr Protoc Microbiol 2005; Appendix 3: Appendix 3C. 
  118. Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm 2017; 8: 516-33.  https://doi.org/10.1039/c6md00585c
  119. Garnacho-Montero J, Escoresca-Ortega A , Fernandez-Delgado E. Antibiotic de-escalation in the ICU: how is it best done? Curr Opin Infect Dis 2015; 28: 193-8.  https://doi.org/10.1097/QCO.0000000000000141
  120. De Waele JJ, Schouten J, Beovic B, Tabah A, Leone M. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med 2020; 46: 236-44.  https://doi.org/10.1007/s00134-019-05871-z
  121. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 2021; 10: 165.  https://doi.org/10.3390/pathogens10020165
  122. Patel K, Bunachita S, Agarwal AA, Bhamidipati A, Patel UK. A comprehensive overview of antibiotic selection and the factors affecting it. Cureus 2021; 13: e13925.  https://doi.org/10.7759/cureus.13925
  123. Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004; 38: 864-70.  https://doi.org/10.1086/381972
  124. World Health Organization. Critically important antimicrobials for human medicine [Internet]. 6th ed. Geneva: World Health Organization; 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf. 
  125. Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 2016; 6: a025247.  https://doi.org/10.1101/cshperspect.a025247
  126. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 2012; 73: 27-36.  https://doi.org/10.1111/j.1365-2125.2011.04080.x
  127. Mabilat C, Gros MF, Nicolau D, Mouton JW, Textoris J, Roberts JA, et al. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol Infect Dis 2020; 39: 791-7.  https://doi.org/10.1007/s10096-019-03769-8
  128. Wong G, Sime FB, Lipman J, Roberts JA. How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 2014; 14: 288.  https://doi.org/10.1186/1471-2334-14-288
  129. Therapeutic Drug Monitoring (TDM) protocol for adult: vancomycin and aminoglycosides [Internet]. Riyadh: Saudi Arabia Ministry of Health; 2019. Available at: https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Protocol-002.pdf. 
  130. Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic combination therapy: a strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front Pharmacol 2022; 13: 839808.  https://doi.org/10.3389/fphar.2022.839808
  131. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med 2020; 46: 1127-53.  https://doi.org/10.1007/s00134-020-06050-1
  132. Shrayteh ZM, Rahal MK, Malaeb DN. Practice of switch from intravenous to oral antibiotics. Springerplus 2014; 3: 717.  https://doi.org/10.1186/2193-1801-3-717
  133. Cyriac JM, James E. Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother 2014; 5: 83-7.  https://doi.org/10.4103/0976-500X.130042
  134. Pletz MW, Hagel S, Forstner C. Who benefits from antimicrobial combination therapy? Lancet Infect Dis 2017; 17: 677-8.  https://doi.org/10.1016/S1473-3099(17)30233-5
  135. Tejaswini YS, Challa SR, Nalla KS, Gadde RS, Pavani AL, Neerisha V. Practice of intravenous to oral conversion of antibiotics and its influence on length of stay at a tertiary care hospital: a prospective study. J Clin Diagn Res 2018; 12: FC01-4.  https://doi.org/10.7860/JCDR/2018/31647.11246
  136. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol 2015; 17: 11-21. 
  137. Rudresh SM, Nagarathnamma T. Extended spectrum β-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J Med Res 2011; 133: 116-8. 
  138. Dhillon RH, Clark J. ESBLs: a clear and present danger? Crit Care Res Pract 2012; 2012: 625170.  https://doi.org/10.1155/2012/625170
  139. Bajpai T, Pandey M, Varma M, Bhatambare GS. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med 2017; 7: 12-6.  https://doi.org/10.4103/2231-0770.197508
  140. Saudagar PS, Survase SA, Singhal RS. Clavulanic acid: a review. Biotechnol Adv 2008; 26: 335-51.  https://doi.org/10.1016/j.biotechadv.2008.03.002
  141. Akova M. Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect 2008; 14 Suppl 1: 185-8. Erratum in: Clin Microbiol Infect 2008; 14 Suppl 5: 21-4.  https://doi.org/10.1111/j.1469-0691.2007.01847.x
  142. Lopez Montesinos I, Montero M, Sorli L, Horcajada JP. Ceftolozane-tazobactam: when, how and why using it? Rev Esp Quimioter 2021; 34(Suppl 1): 35-7.  https://doi.org/10.37201/req/s01.10.2021
  143. Rodgers P, Kamat S, Adhav C. Ceftazidime-avibactam plus metronidazole vs. meropenem in complicated intra-abdominal infections: Indian subset from RECLAIM. J Infect Dev Ctries 2022; 16: 305-13.  https://doi.org/10.3855/jidc.14912
  144. Tanouchi Y, Pai A, Buchler NE, You L. Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 2012; 8: 626.  https://doi.org/10.1038/msb.2012.57
  145. Tangden T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci 2014; 119: 149-53.  https://doi.org/10.3109/03009734.2014.899279
  146. Marshall WF, Blair JE. The cephalosporins. Mayo Clin Proc 1999; 74: 187-95.  https://doi.org/10.4065/74.2.187
  147. Barbaud A, Weinborn M, Garvey LH, Testi S, Kvedariene V, Bavbek S, et al. Intradermal tests with drugs: an approach to standardization. Front Med (Lausanne) 2020; 7: 156.  https://doi.org/10.3389/fmed.2020.00156
  148. Lee SH, Park HW, Kim SH, Chang YS, Kim SS, Cho SH, et al. The current practice of skin testing for antibiotics in Korean hospitals. Korean J Intern Med 2010; 25: 207-12.  https://doi.org/10.3904/kjim.2010.25.2.207
  149. Shenoy ES, Macy E, Rowe T, Blumenthal KG. Evaluation and management of penicillin allergy: a review. JAMA 2019; 321: 188-99.  https://doi.org/10.1001/jama.2018.19283
  150. Kim EJ, Hwang EJ, Yoo YM, Kim KH. Prevention, diagnosis, and treatment of opioid use disorder under the supervision of opioid stewardship programs: it's time to act now. Korean J Pain 2022; 35: 361-82.  https://doi.org/10.3344/kjp.2022.35.4.361
  151. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x