
East Asian Math. J.

Vol. 39 (2023), No. 1, pp. 001–010

http://dx.doi.org/10.7858/eamj.2023.001

SOME FIXED POINT THEOREMS ON CONE S-METRIC

SPACES USING IMPLICIT CONTRACTIVE CONDITIONS

Seung Hyun Kim and Mee Kwang Kang∗

Abstract. In this paper, we introduce two kinds of implicit conditions

and establish some fixed point theorems in cone S-metric spaces, which

generalize the several existing results.

1. Introduction and Preliminaries

Banach contraction mapping principle in a metric space is one of the most
useful result in nonlinear analysis. Many researchers have generalized and im-
proved this result in two directions; one is to generalize its underlying (metric)
space and the other is to generalize the contractive condition in various ways(see,
for example [1, 3, 4, 7, 9, 10])

In 2007, Huang and Zhang [3] introduced the concept of cone metric, as
a generalization of a usual metric, and proved some fixed point theorems for
contractive mappings in normal cone metric spaces. A few years later, Sedghi et
al. [10] introduced the concept of S-metric, a generalization of G-metric andD∗-
metric, and obtained fixed point theorems in complete S-metric spaces under
explicit contractive conditions. In 2017, Dhamodharan and Krishnakumar [2]
introduced the concept of cone S-metric and obtained some fixed point theorems
using a few contractive conditions in cone S-metric spaces.

On the other hand, since Popa [5, 6] employed an implicit contractive type
condition instead of the usual explicit contractive conditions to obtain fixed
point theorems, this direction of research produced a consistent literature on
fixed point and common fixed point therorems in various spaces.

Recently, Saluja [7] obtained fixed point theorems in the setting of complete
cone S-metric spaces under implicit contractive conditions which used in [11].

Motivated and inspired by the previous works, in this paper, we introduce
some implicit conditions and establish some fixed point theorems in cone S-
metric spaces, which generalize the several existing results.

First of all, we recall some basic notions of a cone and a partial ordering.
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A nonempty subset P of a real Banach space E is called a cone if and only if
(P1) P is closed, P ̸= {0};
(P2) a, b ∈ R with a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;
(P3) x ∈ P and −x ∈ P ⇒ x = 0.
For a given cone P ⊂ E, we define a partial ordering ‘⪯’ with respect to P as

follows; for x, y ∈ E, x ⪯ y if and only if y − x ∈ P . We shall note x ≪ y if
and only if y − x ∈ intP , where intP denotes the interior of P . The cone P is
called normal if there is a positive real number K such that 0 ⪯ x ⪯ y implies
∥x∥ ≤ K∥y∥.

Definition 1. [2] Let X be a nonempty set. Suppose that a mapping S :
X ×X ×X → P satisfies the following;
(S1) S(x, y, z) = 0 if and only if x = y = z;
(S2) S(x, y, z) ⪯ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z ∈ X.
Then S is called a cone S-metric on M , and the set X with a cone S-metric S
is called a cone S-metric space, denoted by (X,S).

Definition 2. Let (X,S) be a cone S-metric space. A sequence {xn} in X
called a Cauchy sequence if for any ε ⪰ 0, there exists N ∈ N such that
S(xn, xm, xl) ⪯ ε for each n,m, l ≥ N .

Definition 3. The cone S-metric space (X,S) is said to be complete if every
Cauchy sequence is convergent.

Following lemma is cone S-metric version of Lemma 2.5 in a S-metric spaces
[10].

Lemma 1.1. Let (X,S) be a cone S-metric space. Then, S(x, x, z) = S(z, z, x)
for all x, z ∈ X.

Proof. From (S2), we have

S(x, x, z) ⪯ S(x, x, x) + S(x, x, x) + S(z, z, x) = S(z, z, x)

and similarly

S(z, z, x) ⪯ S(z, z, z) + S(z, z, z) + S(x, x, z) = S(x, x, z).

By the property (P3) of a cone, we have S(x, x, z) = S(z, z, x). □

2. Main Results

First of all, we introduce Implicit Relation 1 to obtain a fixed point theorem
on cone S-metric spaces.

Implicit Relation 1. Let F be the set of all continuous functions F :
P 6 → P consider the following properties;

(F1) there exists k ∈ [0, 1) such that for all x, y, z ∈ P , y ⪯ F (x, x, y, z,0,0)
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with z ⪯ 2x+ y implies that y ⪯ kx,
(F2) for all y ∈ P , y ⪯ F (y,0,0, y, y, y) implies that y = 0,
(F3) xi ⪯ yi + zi for all xi, yi, zi ∈ P (i = 1, 2, · · · , 6),

F (x1, x2, · · · , x6) ⪯ F (y1, y2, · · · , y6) + F (z1, z2, · · · z6).

Actually, for all y ∈ P , F (0,0, 2y, y,0, y) ⪯ ky for some k ∈ [0, 1).

Theorem 2.1. Let X be a nonempty set with a complete cone S-metric S :
X ×X ×X → P , P a normal cone with normal constant K and T : X → X a
mapping satisfies

S(Tx, Tx, Ty) ⪯ F (S(x, x, y), S(x, x, Tx), S(y, y, Ty), S(x, x, Ty), S(y, y, Tx),

S(Tx, Tx, y)) (1)

for all x, y ∈ X and some F ∈ F. Then, we have the followings;
(a) If F satisfies (F1), then T has a fixed point. Moreover, for x0 ∈ X and the
fixed point x,

S(Txn, Txn, x) ⪯
2kn

1− k
S(x0, x0, Tx0).

(b) If F satisfies (F2), then T has a unique fixed point.
(c) If F satisfies (F3) and T has a fixed point x, then T is continuous at x.

Proof. (a) For x0 ∈ X and n ∈ N, put xn+1 = Txn. From (1), we have

S(xn+1, xn+1, xn+2) = S(Txn, Txn, Txn+1)

⪯ F (S(xn, xn, xn+1), S(xn, xn, Txn), S(xn+1, xn+1, Txn+1),

S(xn, xn, Txn+1), S(xn+1, xn+1, Txn), S(Txn, Txn, xn+1))

= F (S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2), S(xn+1, xn+1, xn+1), S(xn+1, xn+1, xn+1))

= F (S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2),0,0).

From the condition (S2) and Lemma 1.1, we get

S(xn, xn, xn+2) ⪯ S(xn, xn, xn+1) + S(xn, xn, xn+1) + S(xn+2, xn+2, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2).

Since S(xn, xn, xn+2), S(xn, xn, xn+1) and S(xn+1, xn+1, xn+2) satisfy the hy-
pothesis of (F1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn+2) ⪯ kS(xn, xn, xn+1).

Applying this method sequentially, we can obtain

kS(xn, xn, xn+1) ⪯ k2S(xn−1, xn−1, xn) ⪯ · · · ⪯ kn+1S(x0, x0, x1).
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From the above inequality, we have

S(xn, xn, xm) ⪯ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

⪯ 2S(xn, xn, xn+1) + S(xn+1, xm, xm)

⪯ 2knS(x0, x0, x1) + 2S(xn+1, xn+1, xn+2) + S(xm, xm, xn+2)

⪯ 2knS(x0, x0, x1) + 2kn+1S(x0, x0, x1) + S(xn+2, xn+2, xm)

⪯ · · ·
⪯ 2(kn + kn+1 + · · ·+ km−1)S(x0, x0, x1)

= 2
kn(1− km−n)

1− k
S(x0, x0, x1)

⪯ 2
kn

1− k
S(x0, x0, x1) for n < m, (2)

which implies that

∥S(xn, xn, xm)∥ ≤ 2
kn

1− k
K∥S(x0, x0, x1)∥ → 0 as n,m→ ∞.

Therefore, we have S(xn, xn, xm) → 0 as n,m→ ∞ and thus {xn} is a Cauchy
sequence. By the completeness of X, lim

n→∞
xn = x for some x ∈ X. From (2),

we get

S(xn+1, xn+1, xm) ⪯ 2
kn+1

1− k
S(x0, x0, x1).

By taking the limits as m→ ∞ in ths above inequality, we have

S(xn+1, xn+1, x) ⪯ 2
kn+1

1− k
S(x0, x0, x1),

which implies that

S(Txn, Txn, x) ⪯ 2
kn+1

1− k
S(x0, x0, x1).

Now, we show that x is a fixed point of T . From (1) and Lemma 1.1, we have

S(xn+1, xn+1, Tx) = S(Txn, Txn, Tx)

⪯ F (S(xn, xn, x), S(xn, xn, Txn), S(x, x, Tx),

S(xn, xn, Tx), S(x, x, Txn), S(Txn, Txn, x))

= F (S(xn, xn, x), S(xn, xn, xn+1), S(x, x, Tx),

S(xn, xn, Tx), S(x, x, xn+1), S(xn+1, xn+1, x))

= F (S(xn, xn, x), S(xn, xn, xn+1), S(x, x, Tx),

S(xn, xn, Tx), S(x, x, xn+1), S(x, x, xn+1)).

Since F is continuous, taking the limits as n → ∞ in the above inequality, we
have

S(x, x, Tx) ⪯ F (0, 0, S(x, x, Tx), S(x, x, Tx),0,0).
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From the above inequality and S(x, x, Tx) ⪯ 2 · 0+ S(x, x, Tx), F satisfies the
condition (F1) and thus, we obtain S(x, x, Tx) ⪯ k · 0 = 0. By (S1), we have
x = Tx. Thus, x is a fixed point of T .
(b) Suppose that T has two distinct fixed points y and z in X. From (1) and

Lemma 1.1, we obtain

S(y, y, z) = S(Ty, Ty, Tz)

⪯ F (S(y, y, z), S(y, y, Ty), S(z, z, Tz),

S(y, y, Tz), S(z, z, Ty), S(Ty, Ty, Tz))

= F (S(y, y, z), S(y, y, y), S(z, z, z),

S(y, y, z), S(z, z, y), S(y, y, z))

= F (S(y, y, z),0,0, S(y, y, z), S(y, y, z), S(y, y, z)).

Since F satisfies the condition (F2), S(y, y, z) = 0 and thus we have y = z.
Therefore, T has a unique fixed point.

(c) Let x be a fixed point of T and {xn} be a convergent sequence in X with

xn → x as n→ ∞. From (1) and Lemma 1.1, we obtain

S(x, x, Txn) = S(Tx, Tx, Txn)

⪯ F (S(x, x, xn), S(x, x, Tx), S(xn, xn, Txn),

S(x, x, Txn), S(xn, xn, Tx), S(Tx, Tx, Txn))

= F (S(x, x, xn), S(x, x, x), S(xn, xn, Txn),

S(x, x, Txn), S(xn, xn, x), S(x, x, Txn))

= F (S(x, x, xn), 0, S(Txn, Txn, xn),

S(Txn, Txn, x), S(x, x, xn), S(Txn, Txn, x)). (3)

From (S2) and Lemma 1.1, we have

S(Txn, Txn, xn) ⪯ 2S(Txn, Txn, x) + S(xn, xn, x)

= 2S(Txn, Txn, x) + S(x, x, xn). (4)

Since F satisfies the condition (F3), from (3) and (4), we have

S(x, x, Txn) ⪯ F (S(x, x, xn),0,0,0, S(x, x, xn),0)

+F (0,0, 2S(Txn, Txn, x), S(Txn, Txn, x),0, S(Txn, Txn, x)).

From the condition (F3), we obtain

S(x, x, Txn) ⪯ F (S(x, x, xn),0,0,0, S(x, x, xn), S(Txn, Txn, x))

+kS(Txn, Txn, x)

⪯ F (S(x, x, xn),0,0,0, S(x, x, xn), S(Txn, Txn, x))

+kS(x, x, Txn) for some k ∈ [0, 1),
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which implies that

S(x, x, Txn) ⪯
1

1− k
F (S(x, x, xn),0,0,0, S(x, x, xn),0) → 0 as n→ ∞.

This shows that T is continuous at x. □

If we put F (x1, x2, x3, x4, x5, x6) := ϕ(x1, x2, x3, x4, x5), then Theorem 2.1
can be modified as follows, which is the fixed point theorem in [7].

Theorem 2.2. [7] Let T be a self-map on a complete cone S-metric space
(X,S), P a normal cone with normal constant K and

S(Tx, Tx, Ty) ⪯ ϕ(S(x, x, y), S(x, x, Tx), S(y, y, Ty), S(x, x, Ty), S(y, y, Tx))

for all x, y ∈ X and some ϕ ∈ ψ. Then, we have
(a) If ϕ satisfies the condition (A1), then T has a fixed point. Moreover, for
x0 ∈ X and the fixed point x, we have

S(Txn, Txn, x) ⪯
2kn

1− k
S(x0, x0, Tx0).

(b) If ϕ satisfies (A2), then T has a unique fixed point.
(c) If ϕ satisfies (A3) and T has a fixed point x, then T is continuous at x.

By putting F (x1, x2, x3, x4, x5, x6) = hx1(h ∈ (0, 1)) in Theorem 2.1, then
the following Theorem 2.3 can be obtain as its corollary.

Theorem 2.3. [2] Let X be a nonempty set with a S-cone metric S : X ×
X ×X → (E,P ), P a normal cone with normal constant K and T : X → X a
mapping satisfies the following

S(Tx, Tx, Ty) ⪯ hS(x, x, y)

for all x, y ∈ X and h ∈ (0, 1). Then T has a unique fixed point.

Now, we introdue another implicit relation as follows;

Implicit Relation 2. Let G be the set of all continuous functions G :
P 5 → P consider the following properties;

(G1) there exists k ∈ [0, 1) such that for all x, y ∈ P , y ⪯ G(x, y, y, x, 4x+y
3 )

implies that x ⪯ ky,
(G2) for all y ∈ P , y ⪯ G(0,0,0, y,0) implies that y = 0,
(G3) for all y ∈ P , y ⪯ G(y,0,0,0, y3 ) implies that y = 0.
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Theorem 2.4. Let X be a nonempty set with a cone S-metric S : X×X×X →
P , P a normal cone with normal constant K and T : X → X a mapping satisfies
the following

S(Tx, Ty, Tz) ⪯ G(S(x, y, z), S(x, x, Tx), S(y, y, Ty), S(z, z, Tz),

1

3
{S(x, x, Ty) + S(z, zTy) + S(y, y, Tx)}) (5)

for all x, y ∈ X and some G ∈ G. If G satisfies (G1), (G2) and (G3), then T
has a unique fixed point.

Proof. For x0 ∈ X and n ∈ N, put xn+1 = Txn. From (5), the condition (S2)
and Lemma 1.1, we have

S(xn+1, xn+1, xn) = S(Txn, Txn, Txn−1)

⪯ G(S(xn, xn, xn−1), S(xn, xn, Txn), S(xn, xn, Txn), S(xn−1, xn−1, Txn−1),

1

3
{S(xn, xn, Txn) + S(xn−1, xn−1, Txn) + S(xn, xn, Txn)})

= G(S(xn, xn, xn−1), S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn−1, xn−1, xn),

1

3
{S(xn, xn, xn+1) + S(xn−1, xn−1, xn+1) + S(xn, xn, xn+1)})

= G(S(xn, xn, xn−1), S(xn+1, xn+1, xn), S(xn+1, xn+1, xn), S(xn, xn, xn−1),

1

3
{2S(xn+1, xn+1, xn) + S(xn+1, xn+1, xn−1)})

⪯ G(S(xn, xn, xn−1), S(xn+1, xn+1, xn), S(xn+1, xn+1, xn), S(xn, xn, xn−1),

1

3
{2S(xn+1, xn+1, xn) + 2S(xn+1, xn+1, xn) + S(xn, xn, xn−1)})

= G(S(xn, xn, xn−1), S(xn+1, xn+1, xn), S(xn+1, xn+1, xn), S(xn, xn, xn−1),

1

3
{4S(xn+1, xn+1, xn) + S(xn, xn, xn−1)}).

Since G satisfies the condition (G1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn) ⪯ kS(xn, xn, xn−1) ⪯ k2S(xn−1, xn−1, xn−2)

⪯ · · · ⪯ kn+1S(x1, x1, x0).
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From the above inequality, we have

S(xn, xn, xm) ⪯ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn+1, xn+1, xn) + S(xn+1, xn+1, xm)

⪯ 2kn+1S(x1, x1, x0) + 2S(xn+1, xn+1, xn+2) + S(xm, xm, xn+2)

⪯ 2kn+1S(x1, x1, x0) + 2kn+2S(x1, x1, x0) + S(xn+2, xn+2, xm)

⪯ · · ·
⪯ 2(kn+1 + kn+2 + · · ·+ km)S(x1, x1, x0)

= 2
kn+1(1− km−n)

1− k
S(x1, x1, x0)

⪯ 2
kn+1

1− k
S(x1, x1, x0) for n < m, (6)

which implies that

∥S(xn, xn, xm)∥ ≤ 2
kn+1

1− k
K∥S(x1, x1, x0)∥ → 0 as n,m→ ∞.

Therefore, we have S(xn, xn, xm) → 0 as n,m→ ∞ and thus {xn} is a Cauchy
sequence. By the completeness of X, lim

n→∞
xn = x for some x ∈ X. Now, we

show that x is a fixed point of T . From (5) and Lemma 1.1, we have

S(xn+1, xn+1, Tx) = S(Txn, Txn, Tx)

⪯ G(S(xn, xn, x), S(xn, xn, Txn), S(xn, xn, Txn), S(x, x, Tx),

1

3
{S(xn, xn, Txn) + S(x, x, Txn) + S(xn, xn, Txn)})

= G(S(xn, xn, x), S(xn, xn, xn+1), S(xn, xn, xn+1), S(x, x, Tx),

1

3
{S(xn, xn, xn+1) + S(x, x, xn+1) + S(xn, xn, xn+1)})

= G(S(xn, xn, x), S(xn, xn, xn+1), S(xn, xn, xn+1), S(x, x, Tx),

1

3
{2S(xn, xn, xn+1) + S(x, x, xn+1)}).

Since G is continuous, taking the limits as n → ∞ in the above inequality, we
have

S(x, x, Tx) ⪯ G(0,0,0, S(x, x, Tx),0).

Since G satisfies the condition (G2), we obtain S(x, x, Tx) ⪯ k · 0 = 0. Thus, x
is a fixed point of T .
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Suppose that T has two distinct fixed points y and z in X. From (5) and
Lemma 1.1, we obtain

S(y, y, z) = S(Ty, Ty, Tz)

⪯ G(S(y, y, z), S(y, y, Ty), S(y, y, Ty), S(z, z, Tz),

1

3
{S(y, y, Ty) + S(z, z, Ty) + S(y, y, Ty)})

= G(S(y, y, z), S(y, y, y), S(y, y, y), S(z, z, z),

1

3
{S(y, y, y) + S(z, z, y) + S(y, y, y)})

= G(S(y, y, z),0,0,0,
1

3
S(y, y, z)).

Since G satisfies the condition (G3), we have S(y, y, z) = 0. From (S1), we have
y = z. Thus, T has a unique fixed point. □

If P is a set of nonnegative real numbers andG(x1, x2, x3, x4, x5) := F (x1, x2, x3, x5)
, then Theorem 2.4 can be modified as follows, which is the result in [8].

Theorem 2.5. [8] Let X be a nonempty set with a S-metric S : X ×X ×X →
[0,∞) and T : X → X a mapping satisfies the following

S(Tx, Ty, Tz) ⪯ F (S(x, y, z), S(x, x, Tx), S(y, y, Ty),

1

3
{S(x, x, Ty) + S(z, zTy) + S(y, y, Tx)})

for all x, y ∈ X and some F ∈ FS. If F satisfies (R1), (R2) and (R3), then T
has a unique fixed point.
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