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EXISTENCE AND NONEXISTENCE OF POSITIVE
SOLUTIONS TO NONLOCAL BOUNDARY VALUE
PROBLEMS WITH STRONG SINGULARITY

CHAN-GYUN KM

ABSTRACT. In this paper, we consider ¢-Laplacian nonlocal boundary
value problems with singular weight function which may not be in L1 (0,1).
The existence and nonexistence of positive solutions to the given problem
for parameter A belonging to some open intervals are shown. Our approach
is based on the fixed point index theory.

1. Introduction

In this paper, we study the existence of positive solutions to the following
boundary value problem

{(w(t)w( u'(t)))' +Ah( )f( ())—0 te (0, 1)
fO dOél fO dOéQ

where ¢ : R — R is an odd increasing homeomorphism, w € C([O, 1], (0, 00)),
A € [0,00) := Ry is a parameter, f € C(Ry,Ry) with f(s) > 0 for s > 0,
h e C(( ,1),R), and the integrator functions «; (i = 1,2) are nondecreasing
on [0, 1].

By a solution u to the problem (1), we mean u € C1(0,1) N C[0,1] with
we(u') € C1(0,1) satisfies (1). Throughout this paper, the following hypotheses
are assumed, unless otherwise stated.

(1)

(H1) There exist increasing homeomorphisms 1,15 : Ry — Ry such that

(@)Y1(y) < plyz) < @(z)2(y) for all z,y € Ry. (2)
(Hy) Fori=1,2, &; := a;(1) — ;(0) € [0, 1).
f(s) f(s)

y foo 1=

Let us introduce notations fy := and, for an

20+ o(s) 8, o(s)

increasing homeomorphism © on R+,
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Do = {g e C((0,1),Ry) : fol ‘@_1 (ff g(T)dT) ‘ ds < oo}.
It is well known that if an odd increasing homeomorphism ¢ satisfies the as-
sumption (H;), then

o M)y Hy) < o Hay) < o N @)y Hy) for all 2,y € Ry 3)

and L'(0,1) N C(0,1) € Dy, € D, C Dy, (see, e.g., ([8], Remark 1)). In
the main result (see Theorem 3.1 below), we assume that the weight function
h in the problem (1) is in Dy,, which implies that h may not be in L*(0,1).
For example, let ¢(z) = x + 22 for z € Ry and define h : (0,1) — R, by
h(t) =t~ for t € (0,1). Then it is easy to check that (H;) is satisfied with
¥1(y) = min{y, y*} and ¥ (y) = max{y,y?}. From the fact that ¢; *(s) = s for
s > 1, it follows that h € Dy, \ L'(0,1) for any « € [1,2).

The nonlocal boundary value problems play an important role in physics
and applied mathematics (see, e.g., [2, 6, 7]). The existence of solutions for
nonlocal boundary value problems have been studied widely. For example,
Liu [15] studied the following four-point boundary value problem

{ u”(t) + h(t)g1(u(t)) =0, t € (0,1), (1)
u(0) = pou(éo), w(1) = pru(ér),

which is a special case of the problem (1). Under various assumptions on the
nonlinearity gi, the existence of one or two positive solutions to the problem (4)
were shown. Webb and Infante [18], when ¢(s) = s and w = 1, presented some
sufficient conditions on the nonlinear term f = f(¢,s) for the existence and
multiplicity of positive solutions to the problem (1) subject to several nonlocal
boundary conditions. Feng, Ge and Jiang [5] studied sufficient conditions on
the nonlinear term f = f(¢, s) for the existence of multiple positive solutions to
the problem (1) subject to multi-point boundary conditions. Kim [10] improved
on the results in [5] under the assumption that the weight function h = h(t)
may not be in L'(0, 1). Cui [4], under the resonance conditions 71727374 # 0 and
7174 — T9T3 = 0, gave some sufficient conditions for the existence of solutions to
the problem (1) with w =1, ¢(s) = sand A = 1. Here 11 = 17f01(17x)da1(a:),
Ty = fol xdoy (), 73 = fol(l —x)dag(z) and 74 = 1 — fol xdas(z). Note that if
a1(x) = as(z) = z, then the assumption (Hz) is not satisfied, but the above
resonance conditions are satisfied because 7; = % for i =1,2,3,4. Bougoffa and
Khanfer [1] considered the following semilinear problem

{u"(t) +ga(t,ult)) =0, t € (0,1),
u(0) = fol my(z)u(z)dx,u(l) = fol mo(z)u(r)d,

where g5 : [0,1] Xx R — R is a given function and m; is an integrable function
on [0,1] for 4 =1,2. The authors investigated the sufficient condition on go for
the uniqueness of solution to the problem (5). Son and Wang [16] studied the
existence and multiplicity of positive solutions to p-Laplacian systems subject
nonlinear boundary conditions. Recently, Kim ([13, 14]) proved the existence
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of one or two positive solutions to the problem (1) when fy = 81 and fo = B2
for 81,82 € {0,00}. For historical development of the theory of the problems
with nonlocal boundary conditions, we refer the reader to the survey papers
[3, 17, 19]. Motivated by the previous results mentioned above, we study the
existence and nonexistence of positive solutions to the problem (1) when either
foo € (0,00) and fo € {0,00} or fy € (0,00) and fo € {0, 00} (see Theorem 3.1
below).

The rest of this paper is organized as follows. In Section 2, preliminary
results which are needed for proving the main result (Theorem 3.1) are provided.
In Section 3, the main result (Theorem 3.1) is stated and the proof of it is given.

2. Preliminaries

Throughout this section, we assume that (Hy), (Hz2) and h € D, \ {0} hold.
The usual maximum norm in a Banach space C[0, 1] is denoted by
lu]|co = rn[gui |u(t)| for uw € C[0,1], and let ap := inf{z € (0,1) : h(z) > 0},
telo,

by := sup{z € (0,1) : h(z) > 0}, ap := sup{z € (0,1) : h(y) > 0 for all
- 1
y € (ap, )}, by, := inf{z € (0,1) : h(y) > Oforally € (x,bn)}, ¢, := Z(Bah—l—dh)

1 -
and ¢} := Z(bh + 3b). Then, since h € C((0,1),R;) \ {0}, we have two
cases: either 0 < ap, < ap < b, < b, < lor0 < a, =b, < b, <1 and
0 <ap < ap =0bp <1. Consequently,
h(t) > 0 for t € (ap,an) U (bp,bp), and 0 < aj, < cj <ci <b, <1. (6)

Let 7y, := 1 min{c},1 — ¢} € (0,1), where
1 1\
= mi t)>0and r =, [ —— = € (0,1].
e (7 o G LS
Then P := {u € C([0,1],Ry) : u(t) > rpllulls for t € [c},c2]} is a cone in
C10,1]. Form > 0,let P, :={u € P : [[ulloc <m}, OPm :={u€P : |ullc =
m} and Py, := Py, U OPy,.

Let Ci := vy ! (lell ) min {/h Pyt (/h h(T)dT> ds,/gh ¥yt (/ h(T)dT) ds}

h

and Co := 7" (wio) max {Al /Och ot (/h h(T)dr) ds, Az /cl ot (/ h,(T)dT) ds} .

Here, c¢j := —" and A; := (1 — &)~ ! > 0 for i = 1,2. Clearly, by (6),
C1 > 0 and Cy > 0. Define continuous functions fi, f* : (0,00) — (0,00) by
fe(m) == min{f(z) : rpm < z <m} and f*(m) := max{f(z) : 0 <z <m} for
m € (0, 00).

Define Ry, Rz : (0,00) — (0,00) by

Ri(s) i= %(S)cp ((’Z) and Ra(s) i= f*1(5)¢ (é) for s € (0, 00).
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Remark 1. (i) By (3) and (Ha), 5 *(2) < ¢;7'(2) for all z € R, and
Ai=1—a) P >1fori=1, 2 Thus, 0 < C; < C3 and
0 < Ra(s) < Ry(s) for all s € (0,00). (7)
L(s

(ii) For any L € C((0,00), (0,00)), let L. := li_r>n 83 for ¢ € {0,00}. Then

it is well known that (fi)e = (") =01if fe =0, and (fi)e = () =
oo if fo = oo (see, e.g., [11, Remark 2]). For i € {1,2}, it follows from

(3) that
hn’(l) R;(s) = o0 if fy =0, and lim Ri(s) = 0 if foo =0; (8)
s5—
liH(l)Ri(S):OiffO 00, and lim R;(s) =0 if foo = 0. (9)
Chd §—00

For k € D, consider the following problem

{(w(t)so( /(1)) + kit ) = o te (0, 1> (10)

fo @)don (x fo @)das (2
Define T': D, — C[0,1] by T'(0 ):0andf0rk€D \{O},

T(k)(t) = Ay fo fo Ik: s,0)dsday (x + fo Ik s,0)ds, if0<t<o,
—As fo f I (s,0)dsdas(x ft Ii(s,0)ds, ifo<t<l1,

where I(s,y) == ¢! (w(s)/ k:(T)dT) for s,y € (0,1) and ¢ = o(k) is a

constant satisfying

1 T o
.Al/ / Ik(s,a)dsdal(x)—F/ I.(s,0)ds
o Jo 0

= —A /01 /; Ii(s, 0)dsdas () —/01 Ii.(s,0)ds. (11)

For any k € H, and any o satisfying (11), T'(k) is monotone increasing on [0, o)
and monotone decreasing on (o, 1]. We notice that o = o (k) is not necessarily
unique, but 7'(k) is independent of the choice of ¢ satisfying (11) (see [9, Remark

2]).
Lemma 2.1. ([9, Lemma 2]) Assume that (H1),(H2) and k € Dy, hold. Then
T(k) is a unique solution to the problem (10) satisfying the following properties:
(i) TU(E) > mindT(k)(0), T(Y(D)} > 0 for t € [0, 1];
(i) for any k # 0, max{T(k)(0), T'(k)(1)} < [[T'(k)| o
(i4i) o is a constant satisfying (11) if and only if T(k)(c) = [|T(k)|loos
(i) T(k)(t) > rymin{t,1 — t}|T(k)||o fort €[0,1] and T(k) € P.

Define a function G : Ry x P — C(0,1) by G(A,u)(t) := Ah(t)f(u(t)) for
(A u) e Ry x P andte (0,1). Clearly, G(A\,u) € D, for any (A, u) € Ry x P,
since h € D,. Let us define an operator H : R x P — P by
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H(\u) :=T(G(\u)) for (A\,u) € Ry x P.
By Lemma 2.1 (i), H(Ry x P) € P, and consequently H is well defined.

Moreover, u is a solution to the problem (1) if and only if H(\, u) = u for some
(A, U) S R+ x P.

Lemma 2.2. ([12, Lemma 4]) Assume that (H1),(H2) and h € Dy, \ {0} hold.
Then the operator H : Ry x P — P 1is completely continuous.

Theorem 2.3. ([14, Theorem 3.3]) Assume that (H1),(H2) and h € Dy, \ {0}
hold. Assume, in addition, that there exist mq1 and mo such that 0 < ms < mq
(resp., 0 < m1 < mg) and Ri(mi1) < Ra(mg). Then the problem (1) has a
positive solution u = u(\) satisfying ma < ||ulloc < m1 (resp., m1 < |Juljoo <
mz) for any A € (R1(m1), Ra(m2)).

3. Main result

In this section, we state and prove the main result of this paper.

Theorem 3.1. Assume that (Hy), (H2) and h € Dy, \ {0} hold.

(@) If fo = 0 and foo € (0,00), then there exist positive constants A*
and A such that the problem (1) has a positive solution u(X\) for any
A € (A", 00) satisfying ||ur|loc = 0 as X — oo, and it has no positive
solutions for A € (0, A).

(1) If fo = 00 and fx € (0,00), then there exist positive constants A, and
X such that the problem (1) has a positive solution u = u()\) for any
A € (0,\) satisfying ||un]le — 0 as A — 0, and it has no positive
solutions for A € (X, 00).

(#i) If fo € (0,00) and fo = 0, then there exist positive constants \; and
A such that the problem (1) has a positive solution u(\) for any \ €
(A],00) satisfying ||uallec — 00 as A — oo, and it has no positive
solutions for X € (0, A").

(iv) If fo € (0,00) and fs = 00, then there exist positive constants AL and
A1 such that the problem (1) has a positive solution u = u(\) for any
A € (0,\L) satisfying ||uxlloc — o0 as A — 0, and it has no positive
solutions for A € (A1, 00).

Proof. We only give the proofs of (i) and (i%), since (i) and (iv) can be proved
in a similar manner.

(Z) Since fo =0, by (8)7
R;(m) 00 asm —0fori=1,2. (12)

From the definition of R; and (2), it follows that

. . e(E) . o(m) 1. 1 1
Jim Ry (m) > lim Fom) > lim Fim) wl(a) = TO?/H(CT) >0
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Thus, there exists A\* := inf{R;(m) : m € (O,oo)} € (0,00). For any A€
(A*,00), by (7) and ( 2), there exist m7y and m3 such that 0 < m3 < m? and
Ri(m?) < A < Ra(m3). By Theorem 2.3, there exists a positive solution uy to
the problem (1) satisfying m3 < [Juxllsc < m}. Moreover, since R;(m) — 0o as
m — 0 for i = 1,2, we may choose m} and mj satisfying 0 < m3 < m7 and
m; — 0 as A — oo. Consequently, we can choose positive solutions uy to the
problem (1) for all large A > 0 satisfying ||ux|lcc — 0 as A — oo.

Now we prove the nonexistence of positive solutions to the problem (1). Let
A > 0 be a constant for which the problem (1) has a positive solution u. Since
fo=0and fs € (0,00), there exists My > 0 such that f(s) < Myp(s) for s €
R4. Thus,

fu(t)) < Myp(u(t)) < Myp(u(o)) for all t € [0,1]. (13)

Here o is a constant satisfying u(o) = ||ul|c. We only consider the case o < ¢,
since the proof for the case o > ¢, is similar. First we prove

(o) < Ay / Ty (5, 0)ds, (14)
0

where Tg(x(s,0) = ! (w@ 7 Mn(r f(U)\(T))dT>. Indeed, from the facts
that Ig(au)(s,0) > 0 for s < o and Iy (s,0) <0 for s > o, it follows that

1 T
/ / I (s, 0)dsday(r)
/ / Ig()\ u) S, O’ deOél / / IG(A u) S, 0 dsdal( ) 0.

1 r o
u(o) = «41/ / IG(A,u)(SvU)dsdm(?“)Jr/ Igoau(s,0)ds
0 0 0

1 r 1 o
= A [/ / TG (s, 0)dsday (r) + (1 —/ dal(r)>/ Ig()\vu)(S,U)dS:|
o Jo 0 0
1 r o
= A [/ / I (s, 0)dsday(r) —|—/ Ig()\7u)(870')d81|
0 o 0

S -'41 / IG()\,u)<s7U)d87

0
and thus (14) is proved. From (14) and (13), it follows that

u(o) Ay /OU ot (wzs) /: )\h(T)f(u(T))dT) ds

Ay /OCh o ! </Ch h(T)d'rwo_l)\Mlga(u(o))> ds
< Cop™ H(wg 'AMip(u(9))) < Covy ' (wy ' AMi)u(0).

IA

IN
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Here Cp := max {Al /Och ot (/h h(T)dT) ds,Az/cl ot (/ h(T)dT) ds} > 0.

Then A > woM; *11(Cy*) =: A\. Consequently, the problem (1) has no positive
solutions for all A € (0, ).

(#4) Since fo = oo, by (2) and (9), R;(m) — 0 as m — 0 for ¢ = 1,2. From
the definition of Ry and (2), it follows that

m
lim Ry(m) < lim (p(a) < lim plm )¢2( )*7102( )

Thus, there exists A* := sup{Rg(m) :m € (0,00)} € (0,00). For any X €
(0, \*), there exist m7 and m3 such that 0 < m} < m3 and R;(m}) < A <
Ry(m3). By Theorem 2.3, there exists a positive solution uy to problem (1)
satisfying m? < ||ux|leo < m3. Moreover, since R;(m) — oo as m — 0 for
i = 1,2, we may choose m7 and mj satisfying 0 < m7 < m3 and m3 — 0 as
A — oo. Consequently, we can choose positive solutions uy to the problem (1)
for all small A > 0 satisfying |Juy|lcc — 0 as A — 0.

Now we prove the nonexistence of positive solutions to the problem (1). Let
A > 0 be a constant for which the problem (1) has a positive solution u. Since
fo =00 and f € (0,00), there exists My > 0 such that

f(s) > Myp(s) for s € R, (15)

Let o be a constant satisfying u(o) = ||u/|eo. We only consider the case o > ¢z,
since the proof for the case o < ¢y, is similar. Since u is monotone increasing on

[0,0], u(t) > u(c}) for t € [c}, o). By (15), f(u(t)) > Map(u(c},)) for t € [c}, ).

Then, by (3),
u(c) > ( /)\h )dT> ds
> < h(r)dr||wl| A Mo (u(c >>>ds
> (/ hr )dsw (ol AMap(u(ch)))
> cm (ol M )u(ch),

where C; := min {/h vyt (/h h(r )m) / byt (/i h(T)dT) ds} > 0. Then
0 cl Ch

h
A < |wlloo My tpo(CT 1) =: X. Consequently, the problem (1) has no positive
solutions for A € (X, 00). O
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