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LOCAL CALDERÓN-ZYGMUND ESTIMATES FOR

PARABOLIC EQUATIONS WITH DUAL DATA

Mikyoung Lee

Abstract. We establish the interior Lq regularity estimates for spatial

gradient of weak solutions to nonlinear parabolic equations with the inho-

mogeneity which is given by the divergence and nondivergence data.

1. Introduction

In this paper, we investigate the interior regularity properties of the solutions
to inhomogeneous nonlinear parabolic equations of the form:

ut − div a(Du) = g − divF in ΩT , (1)

where ΩT := Ω× (0, T ) is a space-time cylinder over a bounded domain Ω ⊂ Rn

with n ⩾ 2 and T is a positive constant, u = u(x, t) is a real valued function,
ut is the time derivative of u, Du = Dxu ∈ Rn is the spatial gradient of u, and
g : ΩT → R and F : ΩT → Rn are some given functions. The nonlinearity a is
supposed to satisfy the conditions:

|a(ξ)| ⩽ L|ξ|, |Dξa(ξ)| ⩽ L (2)

and

Dξa(ξ) η · η ⩾ ν|η|2 (3)

for any ξ, η ∈ Rn and for some constants ν, L with 0 < ν ⩽ 1 ⩽ L. The main
aim of this paper is to show the validity of the following implication:

g ∈ Lq∗
loc, F ∈ Lq

loc ⇒ Du ∈ Lq
loc for any q ⩾ 2, (4)

where q∗ := (n+2)q
n+2+q with the corresponding Calderón-Zygmund type estimates

(see (5)). The result in (4) ultimately means that the given functions g and
F at least have the integrability properties in (4) in order to obtain the Lq

integrability of the spatial gradient Du.
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In the stationary case, Lq regularity theory for the spatial gradient of the
solution with Calderón-Zygmund type estimates has been studied by Iwaniec
[9] for the p-Laplacian equations when p ⩾ 2 and by DiBenedetto and Manfredi
[7] for the p-Laplacian systems with 1 < p <∞. More general nonlinear elliptic
problems have been treated by Caffarelli and Peral [5] and Acerbi and Mingione
[1]. Similar parabolic problems that are related to our equation (1) have been
considered for parabolic p-Laplacian systems by Acerbi and Mingione [2]. In
particular, they developed a new approach that avoids heavy harmonic analysis
tools and uses covering and comparison arguments on the super level set of
solutions allowing to treat intrinsic cylinders. For more general equations and
systems we refer to [3, 4, 6]. Our proof is based on the approach of Acerbi
and Mingione but it is not necessary to adopt the intrinsic geometry viewpoint
because we only consider the case p = 2. The key idea in proving our results is
to derive Calderón-Zygmund type estimates of solution to the modified equation
which is involved with the solution to the heat equation with the inhomogeneity
g given in (1). It could make the proof steps simpler.

For the equation (1), we are dealing with the weak solution u, which is defined
as a function u ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) satisfyingˆ

ΩT

−uφt + a(Du) ·Dφdz =
ˆ
ΩT

gφ+ F ·Dφdz

for every φ ∈ C∞
0 (ΩT ). Note that the existence of the weak solution u can be

shown in the case that the inhomogeneity g − divF belongs to the dual space
L2(0, T ;W−1,2(Ω)), see for instance [11].

Our main result is the following:

Theorem 1.1. Let q ⩾ 2 and u ∈ C0(0, T ;L2(Ω))∩L2(0, T ;W 1,2(Ω)) be a weak

solution of (1). Suppose g ∈ Lq∗
loc(ΩT ) and F ∈ Lq

loc(ΩT ) where q∗ := (n+2)q
n+2+q .

Then we have Du ∈ Lq
loc(ΩT ) with the estimate( 

Qr(z0)

|Du|q dz

) 1
q

⩽ c

[(  
Q2r(z0)

|Du|2 dz
) 1

2

+ r
(  

Q2r(z0)

|g|q∗ dz
) 1

q∗
+
(  

Q2r(z0)

|F |q dz
) 1

q

]
(5)

for any Q2r(z0) ⋐ ΩT , where a constant c > 0 depends on n, ν, L, and q.

2. Comparison estimates

We start this section with some standard notations. A parabolic cylinder
Qr(z0) where z0 = (x0, t0) ∈ Rn×R is denoted asQr(z0) := Br(x0)×(t0−r2, t0+
r2), where Br(x0) is the open ball in Rn with the center x0 and radius r > 0. We
denote ∂pQr(z0) := (Br(x0)×{t = t0−r2})∪(∂Br(x0)× [t0−r2, t0+r2)) as the
parabolic boundary of Qr(z0). When no confusion arises, omitting the reference
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point, we simply write Qr = Qr(z0). For an integrable function f : U → Rm

with U ⊂ RN , we define
ffl
U
f dz := 1

|U |
´
U
f dz, where |U | is the Lebesgue

measure of U in RN . To simplify the notation, the letter c will denote a positive
universal constant which may vary at each appearance throughout the paper.

Let Qρ = Qρ(z0) ⋐ ΩT . As mentioned in the introduction, for given g in the
equation (1), we consider the following Dirichlet problem for heat equations:{

vt −∆v = g in Qρ,
v = 0 on ∂pQρ.

(6)

According to the standard Lγ regularity theory, it is well known that 
Qρ

|vt|γ + |D2v|γ dz ⩽ c

 
Qρ

|g|γ dz

holds for some constant c = c(n, γ) > 0. Then by virtue of Sobolev’s inequality,
we see that( 

Qρ

(
|Dv|
ρ

)γ∗

dz

) 1
γ∗

⩽ c

( 
Qρ

|vt|γ + |D2v|γ dz
) 1

γ

⩽ c

( 
Qρ

|g|γ dz
) 1

γ

(7)

for any 1 < γ < n + 2 where γ∗ := (n+2)γ
n+2−γ , which implies that if g ∈ Lγ(Qρ),

then Dv ∈ Lγ∗
(Qρ).

On the other hand, the problem (6) can be rewritten as{
vt − div(Dv) = g in Qρ,

v = 0 on ∂pQρ.

Combining this problem with (1), we then discover that

ut − div a(Du) = ∂tv − div(Dv)− divF in Qρ,

which implies

(u− v)t − div a(D(u− v) +Dv) = −div(Dv + F ) in Qρ.

Setting w := u− v, we observe that w satisfies

wt − div a(Dw +Dv) = −div(Dv + F ) in Qρ (8)

in the weak sense. Then we obtain the following comparison estimates:

Lemma 2.1. Let h be any weak solution to the homogeneous problem{
ht − div a(Dh) = 0 in Qρ,

h = w on ∂pQρ,
(9)

where w solves the equation (8). Then for any ε > 0, there exists a small
δ = δ(n, ν, L, ε) > 0 such that if 

Qρ

|Dw|2 + 1

δ
(|F |2 + |Dv|2) dz ⩽ 1, (10)
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then  
Qρ

|Dw −Dh|2 dz ⩽ ε.

Moreover, we have
∥Dh∥L∞(Q ρ

2
) ⩽ cLip

for some cLip = cLip(n, ν, L) ⩾ 1.

Proof. We take w − h as a test function in (8) and (16) using Steklov averages
to obtain  

Qρ

wt(w − h) dz +

 
Qρ

a(Dw +Dv) ·D(w − h) dz

=

 
Qρ

(Dv + F ) ·D(w − h) dz

and  
Qρ

ht(w − h) dz +

 
Qρ

a(Dh) ·D(w − h) dz = 0.

Combining two previous estimates, we then have 
Qρ

(w − h)t(w − h) dz +

 
Qρ

(
a(Dw +Dv)− a(Dh)

)
· (Dw −Dh) dz

=

 
Qρ

(Dv + F ) · (Dw −Dh) dz.

Since(
a(Dw +Dv)− a(Dh)

)
· (Dw −Dh)

= (a(Dw +Dv)− a(Dw)) · (Dw −Dh) + (a(Dw)− a(Dh)) · (Dw −Dh),

it follows that 
Qρ

(w − h)t(w − h) dz +

 
Qρ

(
a(Dw)− a(Dh)

)
· (Dw −Dh) dz

=

 
Qρ

(Dv + F ) · (Dw −Dh) dz −
 
Qρ

(a(Dw +Dv)− a(Dw)) · (Dw −Dh) dz.

(11)
Note that ˆ

Qρ

(w − h)t(w − h) dz =

ˆ
Qρ

1

2

∂

∂t
(w − h)2 dz

=
1

2

ˆ
Br

(w − h)2 dx

∣∣∣∣
t=r2

− 1

2

ˆ
Br

(w − h)2 dx

∣∣∣∣
t=−r2

⩾ 0.

Noting that the ellipticity condition (3) means the monotonicity condition

|ξ − η|2 ⩽ c(ν)
(
a(ξ)− a(η)

)
· (ξ − η)

for any ξ, η ∈ Rn, we see that

|Dw −Dh|2 ⩽ c(ν)
(
a(Dw)− a(Dh)

)
· (Dw −Dh).
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Moreover, from (2) we derive∣∣a(Dw +Dv)− a(Dw)
∣∣ ⩽ ∣∣∣∣ˆ 1

0

∂

∂τ
a(Dw + τDv) dτ

∣∣∣∣
⩽
ˆ 1

0

∣∣Dξa(Dw + τDv)
∣∣ dτ |Dv| ⩽ L|Dv|.

Then we have

c(ν)
∣∣a(Dw +Dv)− a(Dw)

∣∣|Dw −Dh| ⩽ c(ν, L) |Dv||Dw −Dh|
⩽ κ1|Dw −Dh|2 + c(κ1, ν, L)|Dv|2

for any κ1 > 0, by Young’s inequality.
On the other hand, for the first term on the right hand side of (11), using

Young’s inequality, we have 
Qρ

(Dv + F ) · (Dw −Dh) dz

⩽ κ2

 
Qρ

|Dw −Dh|2 dz + c(κ2)

 
Qρ

|Dv|2 + |F |2 dz

for any κ2 > 0.
Therefore from (11) we obtain 

Qr

|Dw −Dh|2 dz ⩽ κ

 
Qρ

|Dw −Dh|2 dz + c(κ)

 
Qρ

|Dv|2 + |F |2 dz

for any κ > 0, and choose κ = 1
2 to derive

 
Qρ

|Dw −Dh|2 dz ⩽ c

 
Qρ

|Dv|2 + |F |2 dz ⩽ cδ

by the assumption (10). We now choose δ ∈ (0, 1) so small that c δ ⩽ ε to
discover  

Qρ

|Dw −Dh|2 dz ⩽ ε.

Moreover, we infer 
Qρ

|Dh|2 dz ⩽
 
Qρ

|Dw −Dh|2 dz +
 
Qρ

|Dw|2 dz ⩽ ε+ 1,

where the assumption (10) was used in the last inequality, and then it follows
that

∥Dh∥L∞(Q ρ
2
) ⩽ c

( 
Qρ

|Dh|2 dz
) 1

2

⩽ cLip

for some cLip = cLip(n, ν, L) > 0. □
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3. Proof of Theorem 1.1

The following is technical lemma that will be used in the proof of our main
theorem.

Lemma 3.1 (Lemma 6.1 in [8]). Let ψ : [R1, R2] → [0,∞) be a bounded func-
tion. Suppose that for any ρ1 and ρ2 with 0 < R1 ⩽ ρ1 < ρ2 ⩽ R2,

ψ(ρ1) ⩽ ϑψ(ρ2) +
α

(ρ2 − ρ1)κ
+ β

where α > 0 and β ⩾ 0, κ > 0 and ϑ ∈ [0, 1). Then there exists c = (ϑ, κ) > 0
such that

ψ(R1) ⩽ c(ϑ, κ)

[
α

(R2 −R1)κ
+ β

]
.

Now we prove our main Theorem 1.1. Its proof is divided into three steps.

Step 1. (Covering by stopping time argument)

Fix any Q2r = Q2r(z0) ⋐ ΩT . Recalling (8), we consider a weak solution w
to

wt − div a(Dw +Dv) = −div(Dv + F ) in Q2r, (12)

where v solves {
∂tv −∆v = g in Q2r,

v = 0 on ∂pQ2r.

We let Qρ = Qρ(z0) for any ρ ∈ (0, 2r]. For ρ > 0 and λ > 0, we define the
super level set

E(ρ, λ) := {z ∈ Qρ : |Dw(z)| > λ}.

From now on for simplicity, we write Φ(z) :=
(
|F (z)|2 + |Dv(z)|2

) 1
2 . We also

define

λ0 :=

( 
Q2r

|Dw|2 + 1

δ
Φ2 dz

) 1
2

⩾ 1, (13)

where δ ∈ (0, 1) will be chosen later, depending only on n, ν, L, and q (see
below from (20)).

Let r ⩽ r1 < r2 ⩽ 2r and consider any λ satisfying

λ ⩾ λ1 :=

(
64r

r2 − r1

)n+2
2

λ0. (14)

We notice that Qρ(z̃) ⊂ Qr2 ⊂ Q2r for any z̃ = (x̃, t̃) ∈ E(r1, λ) and all
0 < ρ < r2 − r1. Then we have the Vitali type covering lemma of the super
level set E(r1, λ) as follows:
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Lemma 3.2. For each r ⩽ r1 < r2 ⩽ 2r and λ ⩾ λ1, there exist zi ∈ E(r1, λ)
and ρi ∈

(
0, r2−r1

32

)
, i = 1, 2, 3, · · · , such that the parabolic cylinders Qρi

(zi) are
mutually disjoint,

E(r1, λ) \ N ⊂
∞⋃
i=1

Q8ρi
(zi)

for some Lebesgue measure zero set N , 
Qρi

(zi)

|Dw|2 + 1

δ
Φ2 dz = λ2,

and  
Qρ(zi)

|Dw|2 + 1

δ
Φ2 dz < λ2 for all ρ ∈ (ρi, r2 − r1].

Proof. The proof of this lemma is the same as that in [10, Lemma 3.1] (see also
[2]) but we provide the proof for reader’s convenience.

For z̃ ∈ E(r1, λ) and
r2−r1
32 ⩽ ρ ⩽ r2 − r1, we have 

Qρ(z̃)

|Dw|2 + 1

δ
Φ2 dz ⩽

|Q2r|
|Qρ(z̃)|

 
Q2r

|Dw|2 + 1

δ
Φ2 dz

=
|Q2r|λ20
|Qρ(z̃)|

=

(
2r

ρ

)n+2

λ20

⩽

(
64r

r2 − r1

)n+2

λ20 = λ21 ⩽ λ2

by (13) and (14). Moreover, the parabolic Lebesgue differentiation theorem
yields that, for almost every z̃ ∈ E(r1, λ),

lim
ρ→0+

 
Qρ(z̃)

|Dw|2 + 1

δ
Φ2 dz ⩾ |Dw(z̃)|2 > λ2.

Since the map ρ 7→
 
Qρ(z̃)

|Dw|2 +
1

δ
Φ2 dz is continuous, there exists ρz̃ ∈(

0, r2−r1
32

)
such that  

Qρz̃
(z̃)

|Dw|2 + 1

δ
Φ2 dz = λ2

and  
Qρ(z̃)

|Dw|2 + 1

δ
Φ2 dz < λ2 for all ρ ∈ (ρz̃, r2 − r1].

Therefore we apply Vitali’s covering lemma for {Qρz̃ (z̃) : z̃ ∈ E(r1, λ)} to
complete the proof. □

From this lemma, setting Q
(j)
i := Q2jρi

(zi), j = 0, 1, 2, 3, 4, 5, we obtain that

|Q(0)
i | ⩽ 2

λ2

ˆ
Q

(0)
i ∩{|Dw|2>λ2

4 }
|Dw|2 dz + 2

δλ2

ˆ
Q

(0)
i ∩{Φ2> δλ2

4 }
Φ2 dz (15)
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and  
Q

(5)
i

|Dw|2 + 1

δ
Φ2 dz < λ2.

Step 2. (Estimates of supper-level sets)

We consider the following rescaled functions:

aλ(ξ) :=
1

λ
a(λξ) for ξ ∈ Rn,

wλ,i(z) :=
1

8ρiλ
w(Zi), vλ,i(z) :=

1

8ρiλ
v(Zi), and Fλ,i(z) :=

1

λ
F (Zi)

for z = (x, t) ∈ Q4(0), where Zi = zi +
(
8ρix, (8ρi)

2t
)
. Then it is clear that

aλ(ξ) satisfies (2) and (3) with ΩT = Q4(0). Moreover, we observe that wλ,i is
a weak solution to

∂

∂t
wλ,i − div aλ(Dwλ,i +Dvλ,i) = −div(Dvλ,i + Fλ,i) in Q4(0).

Therefore we have 
Q4(0)

|Dwλ,i|2 +
1

δ
Φ2

λ,i dz =
1

λ2

 
Q

(5)
i

|Dw|2 + 1

δ
Φ2 dz < 1,

where Φλ,i :=
(
|Dvλ,i|2 + |Fλ,i|2

) 1
2 .

Now let ε > 0 be sufficiently small, which will be chosen in (20) below. Then

considering a weak solution h̃λ,i to{
∂
∂t h̃λ,i − div a(Dh̃λ,i) = 0 in Q4(0),

h̃λ,i = wλ,i on ∂pQ4(0),
(16)

Lemma 2.1 provides that there exist δ = δ(n, µ, L, ε) > 0 and cLip = cLip(n, ν, L)
⩾ 1 such that 

Q2(0)

|Dwλ,i −Dh̃λ,i|2dz ⩽ ε and ∥Dh̃λ,i∥L∞(Q1(0)) ⩽ cLip.

Here we remark that both δ and cLip are independent of λ and i. Setting

hλ,i(z) = hλ,i(x, t) := 8ρiλ h̃λ,i

(
x− yi
8ρi

,
t− τi
(8ρi)2

)
,

where zi = (yi, τi), we therefore obtain 
Q

(3)
i

|Dw −Dhλ,i|2dz ⩽ ελ2 and ∥Dhλ,i∥L∞(Q
(3)
i )

⩽ cLipλ. (17)

Next, for any λ ⩾ λ1, we consider the upper-level sets E(r1, cLipλ). By

Lemma 3.2, the collection {Q(3)
i } covers E(r1, λ)\N with |N | = 0. It is obvious
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that E(r1, 2cLipλ)\N ⊂ E(r1, λ)\N . For z ∈ Q
(3)
i such that |Dw(z)| > 2cLipλ,

we note that

|Dw(z)|2 ⩽ |Dw(z)−Dhλ,i(z)|2 + |Dhλ,i(z)|2

⩽ |Dw(z)−Dhλ,i(z)|2 + c2Lipλ
2

< |Dw(z)−Dhλ,i(z)|2 +
1

4
|Dw(z)|2,

and then
|Dw(z)|2 < 2|Dw(z)−Dhλ,i(z)|2.

Then it follows from (17) thatˆ
E(r1,2cLipλ)

|Dw|2 dz ⩽
∞∑
i=1

ˆ
Q

(3)
i ∩{|Dw|>2cLipλ}

|Dw|2 dz

⩽
∞∑
i=1

ˆ
Q

(3)
i ∩{|Dw|>2cLipλ}

2|Dw −Dhλ,i|2 dz

⩽ 2ελ2
∞∑
i=1

|Q(3)
i | = 23n+7ελ2

∞∑
i=1

|Q(0)
i |.

Hence (15) allows to obtainˆ
E(r1,2cLipλ)

|Dw|2 dz

⩽ cε

∞∑
i=1

ˆ
Q

(0)
i ∩{|Dw|2>λ2

4 }
|Dw|2 dz + cε

δ

∞∑
i=1

ˆ
Q

(0)
i ∩{Φ2> δλ2

4 }
Φ2 dz,

where the constant c > 0 depends only on n, ν, and L. Since Q
(0)
i ⊂ Qr2 ,

i = 1, 2, . . . , are mutually disjoint, it turns out that for any λ ⩾ λ1ˆ
E(r1,2cLipλ)

|Dw|2 dz ⩽ cε

ˆ
Qr2

∩{|Dw|2>λ2

4 }
|Dw|2 dz + cε

δ

ˆ
Qr2

∩{Φ2> δλ2

4 }
Φ2 dz.

(18)

Step 3. (Gradient estimates)

Since the Lq boundedness of Dw cannot be ensured, we employ a truncation
argument. We set

|Dw|k := min{|Dw|, k} for k ⩾ 0.

For k > λ, the inequality |Dw|k > λ holds if and only if the inequality |Dw| > λ
holds. Then from (18) we obtainˆ

Qr1∩{|Dw|k>2cLipλ}
|Dw|2 dz

⩽ cε

ˆ
Qr2

∩{|Dw|2k>
λ2

4 }
|Dw|2 dz + cε

δ

ˆ
Qr2

∩{Φ2> δλ2

4 }
Φ2 dz.
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We multiply both sides of the above inequality by λq−3 and integrate with
respect to λ over (λ1,∞) to discover

ˆ ∞

λ1

λq−3

ˆ
Qr1∩{|Dw|k>2cLipλ}

|Dw|2 dzdλ

⩽ cε

( ˆ ∞

λ1

λq−3

ˆ
Qr2∩{|Dw|2k>

λ2

4 }
|Dw|2 dzdλ

+
1

δ

ˆ ∞

λ1

λq−3

ˆ
Qr2

∩{Φ2> δλ2

4 }
Φ2 dzdλ

)
=: cε(I + II).

(19)

Here, by using Fubini’s theorem, we derive that

ˆ ∞

λ1

λq−3

ˆ
Qr1

∩{|Dw|k>2cLipλ}
|Dw|2 dzdλ

=

ˆ
Qr1∩{|Dw|k>2cLipλ1}

|Dw|2
ˆ |Dw|k

2cLip

λ1

λq−3 dλdz

=
1

q − 2

ˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2

(
|Dw|q−2

k

(2cLip)q−2
− λq−2

1

)
dz

=
(2cLip)

2−q

q − 2

ˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2|Dw|q−2

k dz

− λq−2
1

q − 2

ˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2 dz.

Similarly, we also use Fubini’s theorem to obtain

I =

ˆ
Qr1

∩{|Dw|2k>
λ2
1
4 }

|Dw|2
ˆ 2|Dw|k

λ1

λq−3 dλdz

=
1

q − 2

ˆ
Qr2

∩{|Dw|2k>
λ2
1
4 }

|Dw|2
(
2q−2|Dw|q−2

k − λq−2
1

)
dλdz

⩽
2q−2

q − 2

ˆ
Qr2

∩{|Dw|2k>
λ2
1
4 }

|Dw|2|Dw|q−2
k dz

and

II =
1

δ

ˆ
Qr2

∩{Φ2>
δλ2

1
4 }

Φ2

ˆ 2Φ√
δ

λ1

λq−3 dλdz ⩽
2q−2δ−

q
2

q − 2

ˆ
Qr2

∩{Φ2>
δλ2

1
4 }

Φq dz.
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Therefore we insert the above estimates into (19) to obtain
ˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2|Dw|q−2

k dz

⩽ cε4q−2cq−2
Lip

(ˆ
Qr2

∩{|Dw|2k>
λ2
1
4 }

|Dw|2|Dw|q−2
k dz + δ−

q
2

ˆ
Qr2

∩{Φ2>
δλ2

1
4 }

Φq dz

)
+ (2cLipλ1)

q−2

ˆ
Qr1∩{|Dw|k>2cLipλ1}

|Dw|2 dz

⩽
1

2

(ˆ
Qr2

∩{|Dw|2k>
λ2
1
4 }

|Dw|2|Dw|q−2
k dz + δ−

q
2

ˆ
Qr2

∩{Φ2>
δλ2

1
4 }

Φq dz

)
+ (2cLipλ1)

q−2

ˆ
Qr1∩{|Dw|k>2cLipλ1}

|Dw|2 dz

(20)

by choosing ε > 0 so small that cε4q−2cq−2
Lip ⩽ 1

2 . We remark that δ is also
determined in this step.

Recalling the definition of λ1 in (14), we note that

(2cLipλ1)
q−2 =

[
2cLip

(
64r

r2 − r1

)n+2
2

λ0

]q−2

⩽ c

(
r

r2 − r1

) (n+2)(q−2)
2

λq−2
0

and we concludeˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2|Dw|q−2

k dz

⩽
1

2

ˆ
Qr2∩{|Dw|2k>

λ2
1
4 }

|Dw|2|Dw|q−2
k dz + c

ˆ
Qr2

Φq dz

+ c

(
r

r2 − r1

) (n+2)(q−2)
2

λq−2
0

ˆ
Qr1

∩{|Dw|k>2cLipλ1}
|Dw|2 dz

for any r ⩽ r1 < r2 ⩽ 2r, where a constant c > 0 depends on n, ν, L, and q.
Applying Lemma 3.1, we haveˆ

Qr

|Dw|2|Dw|q−2
k dz ⩽ cλq−2

0

ˆ
Q2r

|Dw|2 dz + c

ˆ
Q2r

Φq dz.

By virtue of Fatou’s lemma, letting k → ∞, we obtainˆ
Qr

|Dw|q dz ⩽ cλq−2
0

ˆ
Q2r

|Dw|2 dz + c

ˆ
Q2r

Φq dz.

Since

λq−2
0 =

( 
Q2r

|Dw|2 + 1

δ
Φ2 dz

) q−2
2

,
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we conclude that
 
Qr

|Dw|q dz ⩽ c

( 
Q2r

|Dw|2 + 1

δ
Φ2 dz

) q−2
2

 
Q2r

|Dw|2 dz + c

 
Q2r

Φq dz

⩽ c

( 
Q2r

|Dw|2 + 1

δ
Φ2 dz

) q
2

+ c

( 
Q2r

|Dw|2 dz
) q

2

+ c

 
Q2r

Φq dz

⩽ c

( 
Q2r

|Dw|2 dz
) q

2

+ c

 
Q2r

Φq dz

by using Young’s inequality and Hölder’s inequality.
Recalling the definition of Φ, we therefore obtain

 
Qr

|Dw|q dz ⩽ c

( 
Q2r

|Dw|2 dz
) q

2

+ c

 
Q2r

(|F |2 + |Dv|2)
q
2 dz

⩽ c

( 
Q2r

|Dw|2 dz
) q

2

+ c

 
Q2r

|F |q + |Dv|q dz,

which yields that 
Qr

|Du|q dz ⩽ c

( 
Qr

|Dw|q dz +
 
Qr

|Dv|q dz
)

⩽ c

( 
Q2r

|Dw|2 dz
) q

2

+ c

 
Q2r

|F |q + |Dv|q dz + c

 
Qr

|Dv|q dz

⩽ c

( 
Q2r

|Du|2 dz
) q

2

+ c

 
Q2r

|Dv|q + |F |q dz

⩽ c

( 
Q2r

|Du|2 dz
) q

2

+ c

( 
Q2r

|rg|q∗ dz
) q

q∗

+ c

 
Q2r

|F |q dz,

where we applied (7) in the last inequality.
We finally obtain that( 

Qr

|Du|q dz
) 1

q

⩽ c

[( 
Q2r

|Du|2 dz
) 1

2

+ r
( 

Q2r

|g|q∗
) 1

q∗
+
( 

Q2r

|F |q dz
) 1

q

]
where a constant c > 0 depends on n, ν, L, and q.
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