DOI QR코드

DOI QR Code

HOMOLOGY AND SERRE CLASS IN D(R)

  • Zhicheng, Wang (Department of Mathematics Northwest Normal University)
  • Received : 2021.09.22
  • Accepted : 2022.10.28
  • Published : 2023.01.31

Abstract

Let 𝓢 be a Serre class in the category of modules and 𝖆 an ideal of a commutative Noetherian ring R. We study the containment of Tor modules, Koszul homology and local homology in 𝓢 from below. With these results at our disposal, by specializing the Serre class to be Noetherian or zero, a handful of conclusions on Noetherianness and vanishing of the foregoing homology theories are obtained. We also determine when TorR𝓼+t(R/𝖆, X) ≅ TorR𝓼(R/𝖆, H𝖆t(X)).

Keywords

References

  1. M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), no. 3, 1275-1287. https://doi.org/10.1016/j.jalgebra.2008.04.002
  2. M. Asgharzadeh and M. Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull. 53 (2010), no. 4, 577-586. https://doi.org/10.4153/CMB-2010-064-0
  3. M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
  4. L. W. Christensen, Sequences for complexes, Math. Scand. 89 (2001), no. 2, 161-180. https://doi.org/10.7146/math.scand.a-14336
  5. D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(96)00044-8
  6. K. Divaani-Aazar, H. Faridian, and M. Tousi, Local homology, finiteness of Tor modules and cofiniteness, J. Algebra Appl. 16 (2017), no. 12, 1750240, 10 pp. https://doi.org/10.1142/S0219498817502401
  7. K. Divaani-Aazar, H. Faridian, and M. Tousi, Local homology, Koszul homology and Serre classes, Rocky Mountain J. Math. 48 (2018), no. 6, 1841-1869. https://doi.org/10.1216/rmj-2018-48-6-1841
  8. H. Faridian, Gorenstein homology and finiteness properties of local (co)homology, Ph. D. thesis, Shahid Beheshti University (2020), arXiv:2010.03013v1.
  9. J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438-453. https://doi.org/10.1016/0021-8693(92)90026-I
  10. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421-429. https://doi.org/10.1017/S0305004100070493
  11. J. Lipman, Lectures on local cohomology and duality, in Local cohomology and its applications (Guanajuato, 1999), 39-89, Lecture Notes in Pure and Appl. Math., 226, Dekker, New York, 2002.
  12. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. https://doi.org/10.1016/j.jalgebra.2004.08.037
  13. M. Porta, L. Shaul, and A. Yekutieli, On the homology of completion and torsion, Algebr. Represent. Theory 17 (2014), no. 1, 31-67. https://doi.org/10.1007/s10468-012-9385-8
  14. S. Sather-Wagstaff and R. Wicklein, Support and adic finiteness for complexes, Comm. Algebra 45 (2017), no. 6, 2569-2592. https://doi.org/10.1080/00927872.2015.1087008
  15. A.-M. Simon, Adic-completion and some dual homological results, Publ. Mat. 36 (1992), no. 2B, 965-979. https://doi.org/10.5565/PUBLMAT_362B92_14