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UN RINGS AND GROUP RINGS

Kanchan Jangra and Dinesh Udar

Abstract. A ring R is called a UN ring if every non unit of it can be

written as product of a unit and a nilpotent element. We obtain results

about lifting of conjugate idempotents and unit regular elements modulo
an ideal I of a UN ring R. Matrix rings over UN rings are discussed and

it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN
if and only if R is UN. Lastly, UN group rings are investigated and we

obtain the conditions on a group G and a field K for the group algebra

KG to be UN. Then we extend the results obtained for KG to the group
ring RG over a ring R (which may not necessarily be a field).

1. Introduction

In last two decades one of the active areas of research have been the rings
whose elements can be written as a sum/product of units/ idempotents/ nilpo-
tent elements. For example, clean rings are those in which every element of
the ring R can be written as sum of a unit and an idempotent. If in place of
addition, we take the multiplication, i.e., if every element of a ring R can be
written as product of a unit and an idempotent, then we obtain the well known
class of unit regular rings. Taking into consideration the unit and nilpotent
elements, Călugăreanu and Lam in [2] defined a ring as fine ring, if every non
zero element of a ring R can be written as a sum of a unit and a nilpotent
element. They proved that the class of fine rings is a proper subclass of that
of simple rings. Now, if in place of addition, the multiplication of unit and
nilpotent elements is taken into consideration, then, Călugăreanu in [1] defined
a ring R to be a UN ring if every non unit of R can be written as product of a
unit and a nilpotent element. A non unit element x ∈ R is called strongly UN
if in its UN-decomposition, the unit and nilpotent commute.

In Section 2, we discuss certain properties of UN rings. Lifting of various
types of elements modulo an ideal I have been studied by Khurana, Lam and
Nielsen in [4]. We discuss lifting properties of UN rings modulo an ideal I. It is
pertinent to mention here that the lifting properties like conjugate idempotent
lifting and unit regular elements lifting are considered modulo a two sided
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ideal in contrast to the exchange rings, where idempotents lift modulo each left
(right) ideal. Then we discuss the question raised by Călugăreanu [1] that “is
Mn(R) over a UN ring R, also UN?”. We obtain that if R is commutative,
then Mn(R) is UN if and only if R is UN.

In Section 3, we focus on UN group rings. The group rings involving units
and idempotents to represent every element as sum (clean ring)/product (unit
regular ring) of these elements have been studied by many authors. So, our
focus is on the group rings involving units and nilpotent elements, i.e., fine rings
and UN rings. A group ring RG can never be a fine ring, because a fine ring is
a simple ring and RG always has ω(G) as its proper ideal. So, we investigate
the structure of UN group rings. We first take up the case of group algebra
KG of a group G over a field K. We obtain the result that if charK = 0, then
KG can be a UN ring if and only if G is trivial. If charK = p, then KG is a
UN ring implies that the group G must be a p-group and the converse holds
if G is locally finite. Next we investigate that what could be the characteristic
of a UN ring R. We arrive at the conclusion that the charR of a UN ring can
be either 0 or pα and particularly in case of group ring RG, the characteristic
of R can not be 0. Then we investigate the structure of the group ring RG of
a group G over an arbitrary ring R (which may not necessarily be a field) and
obtain the result that if RG is a UN ring then R is a UN ring, G is a p-group
and p ∈ J(R); and the converse holds if G is locally finite.

We briefly summarize the basic terminologies and notations which we will
use in this paper. Throughout this paper we consider R to be an associative
ring with identity 1 6= 0. The full matrix ring over a ring R is denoted by
Mn(R). Let U(R), P (R), J(R), Z(R) and N(R) denote the unit group, the
prime radical, the Jacobson radical, the center and the set of nilpotent elements
of a ring R, respectively. We denote by RG the group ring of a group G over a
ring R. The augmentation ideal of RG, denoted by ω(G), is the kernel of the
augmentation map ω : RG→ R given by ω(

∑
g∈G agg) =

∑
ag. It can be seen

that ω(G) is generated as an ideal of RG by the set {1−g : g ∈ G, g 6= 1}. If H
is a subgroup of G, then we denote by ω(H) the left ideal of RG generated by
the set {1− h : h ∈ H,h 6= 1}. If H CG, then ω(H) is a two sided ideal of RG
and RG/ω(H) ∼= R(G/H). For other group ring related results and notations
we refer to Connell [3] and Passman [7]. For ring theoretic results we refer to
Lam [5].

2. UN rings

We list below some of the properties of UN rings in the form of the lemma,
which we will require in the following sections.

Lemma 2.1. Let R be a ring. Then the following statements hold:

(a) A UN ring is left-right symmetric ([1], Proposition 1(3)).
(b) Homomorphic image of a UN ring is UN ([1], Proposition 3(1)).
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(c) Let I be a nil ideal of R. Then R is UN if and only if R/I is UN ([9],
Proposition 0(a)).

(d) A UN ring has no nontrivial central idempotents ([9], Proposition 0(c)).
(e) Every left or right regular element of a UN ring R is invertible, i.e., R

is its own classical ring of quotients ([9], Proposition 0(f)).

The classes of local rings and UN rings are separate, some examples to this
effect can be found in [1]. We prove a theorem below and using it we get a
result somewhat in line with local rings.

Theorem 2.2. Let I CR. Then the following are equivalent:

(1) R/I is UN.
(2) R/In is UN for all n ∈ N.
(3) R/In is UN for some n ∈ N.

Proof. (1)⇒(2) Let I CR and R/I be UN. It can be seen that

R/I ∼= (R/In)/(I/In).

Since (I/In) is nilpotent in (R/In), the result follows by Lemma 2.1(c).
(2)⇒(3) is evident.
(3)⇒(1) Let R/In be UN for some n ∈ N. As homomorphic image of a UN

ring is UN and

R/I ∼= (R/In)/(I/In).

So we get that R/I is UN. �

By using the above theorem we get a result for UN rings similar to the local
rings ([5], Ex. 19.5).

Corollary 2.3. Let I C R such that I is maximal as a left ideal. Then R/In

is a UN ring for all n ∈ N.

2.1. Lifting properties

In this subsection we discuss about lifting properties of UN rings. We start
with the definition of isomorphic and conjugate idempotents in R.

Definition. Two idempotents e ∈ R and f ∈ R are called

(1) conjugate (written as e ∼ f), if f = u−1eu for some u ∈ U(R).
(2) isomorphic (written as e ∼= f), if eR ∼= fR as right R-modules.

The well known results about isomorphic and conjugate idempotents are
mentioned below in the form of lemmas.

Lemma 2.4. Let e and f be idempotents in a ring R. Then following are
equivalent:

(1) e ∼ f .
(2) e ∼= f and (1− e) ∼= (1− f).
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Lemma 2.5. Let e and f be idempotents in a ring R. Then following are
equivalent:

(1) e ∼= f .
(2) eR ∼= fR as right R-modules.
(3) Re ∼= Rf as left R-modules.
(4) e = ab and f = ba for some a, b ∈ R.

We observe that if e is a non trivial idempotent in a UN ring R with e = ut
for some u ∈ U(R) and t ∈ N(R), then t is unit regular with t = tut. And also
f = tu is an idempotent isomorphic as well as conjugate to e.

Let I C R, we say that idempotents lift modulo I if for any idempotent
ē ∈ R/I there exists an idempotent x ∈ R such that x̄ = ē. And conju-
gate idempotents ē, f̄ ∈ R/I are said to lift modulo I if there exit conjugate
idempotents x and y in R such that x̄ = ē and ȳ = f̄ .

Theorem 2.6. In a UN ring if idempotents lift modulo an ideal I, then con-
jugate idempotents lift modulo I.

Proof. Let R be a UN ring and ICR such that idempotents lift modulo I. Let
ē, f̄ ∈ R/I be conjugate idempotents in R/I such that f̄ = u−1ēū for some
unit ū ∈ U(R/I). Since idempotents lift modulo I, there exit idempotents x
and y ∈ R such that x̄ = ē and ȳ = f̄ . Let the preimage of ū in R be v. As R
is UN, so if v /∈ U(R), then v = wt for some w ∈ U(R) and t ∈ N(R). So,

ū = v̄ = w̄t̄ =⇒ t̄ = w−1v̄ ∈ U(R/I)

which is not possible. Thus, v ∈ U(R) and hence the preimage of u−1ēū is
v−1xv = z (say), which is an idempotent conjugate to x and z̄ = f̄ . �

Theorem 2.7. Let R be a UN ring and I CR. Then unit regular elements lift
modulo I if and only if idempotents lift modulo I.

Proof. Let R be UN and unit regular elements lift modulo I. Let ē be an
idempotent in R/I. As idempotents are unit regular elements, so ē lifts to a
unit regular element, say x ∈ R, such that x = xvx for some v ∈ U(R). By
using the fact that x = xvx, it is a routine calculation to check that

(x− v(x2 − x))2 = x− v(x2 − x).

So y := x − v(x2 − x) is an idempotent in R. Also as x̄ = ē, it can be easily
seen that

x2 = x.1.x = x̄1̄x̄ = ē1̄ē = ē.

Thus, we get (x2 − x) ∈ I, which implies that ȳ = x̄ = ē. Hence ē lifts to an
idempotent in R.

Conversely, let idempotents lift modulo I. Let a ∈ R/I be unit regular.
It is well known that a unit regular element is a multiple of a unit and an
idempotent. So ā = ūē for some ū ∈ U(R/I) and ē2 = ē. By following the
proof of above theorem, we get that ū lifts to some v ∈ U(R) and by given
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hypothesis ē lifts to some idempotent z ∈ R. Thus, ā lifts to a unit regular
element vz. �

2.2. UN matrix rings

In this subsection we discuss the question raised by Călugăreanu in [1] that
“is Mn(R) over a UN ring R, also UN?”. As introduced in [8], a ring R is
called a US-ring if every non unit element of it can be written as product of
a unit and a strongly nilpotent element. An element x ∈ R is called strongly
nilpotent, if every sequence x = x0, x1, x2, . . . such that xi+1 ∈ xiRxi converges
to zero. It is evident that every strongly nilpotent element is nilpotent but the
converse may not hold good ([8, Example 1]). In the case of a commutative
ring R, an element is strongly nilpotent if and only if it is nilpotent.

Theorem 2.8. Let R be ring.

(1) If R is a US-ring, then Mn(R) is UN.
(2) If Mn(R) is UN, then Z(R) is a US-ring.

Proof. (1) It is well known that Mn(R)/J(Mn(R)) ∼= Mn(R/J(R)). Since R is
a US-ring, by [8, Theorem 1] we get that R/P (R) is a division ring, and hence
J(R) = P (R). Then by [1, Corollary 7], Mn(R/J(R)) ∼= Mn(R)/J(Mn(R)) is
UN. By using the fact that P (Mn(R)) = Mn(P (R)), we obtain that

J(Mn(R)) = Mn(J(R)) = Mn(P (R)) = P (Mn(R))

is nil. Thus, we have obtained that Mn(R)/J(Mn(R)) is UN and J(Mn(R)) is
nil. By Lemma 2.1(c), we get that Mn(R) is UN.

(2) Let Mn(R) be UN. The center of Mn(R) is Z(Mn(R)) = {aIn : a ∈
Z(R)}, i.e., the scalar matrices of the form aIn for a ∈ Z(R). We have
Z(Mn(R)) ∼= Z(R) by the mapping f : Z(R) → Z(Mn(R)) defined by f(a) =
aIn, a ∈ Z(R). Now the result follows from [9, Proposition 0(b)] and the fact
that in a commutative ring, the nilpotent and strongly nilpotent elements co-
incide. �

Corollary 2.9. Let R be a commutative ring. Then Mn(R) is UN if and only
if R is UN.

Corollary 2.10 ([10]). Let R be a commutative ring. Then Mn(R) is UN if
and only if R is a local ring with J(R) nil.

A ring R is called 2-primal if R/I is a domain for every minimal prime ideal
I of R. It is well known in literature that for 2-primal rings P (R) = N(R).

Corollary 2.11. Let R be a 2-primal UN ring. Then Mn(R) is UN.

Since a reduced UN ring is a division ring, we get the result obtained by
Călugăreanu in [1] as a corollary of the above theorem.

Corollary 2.12. A simple Artinian ring is UN.
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3. UN Group rings

3.1. Group algebras

First we take up the case of group algebra of a group G over a field K. If
G is a finite group, then let us denote by Ĝ, the following element of KG,
Ĝ =

∑
g∈G g.

Theorem 3.1. Let K be a field and G be a group.

(i) If charK = 0, then KG is UN if and only if G = 〈1〉.
(ii) If charK = p, then KG is UN implies that G is a p-group; the converse

holds if G is locally finite.

Proof. First of all we see that ifKG is UN, thenG is a torsion group irrespective
of whether characteristic of field K is 0 or p. Let g ∈ G, then 1− g /∈ U(KG).
So 1− g = ut for some u ∈ U(KG) and t ∈ N(KG). If g 6= 1, then t 6= 0 and
we can choose a positive integer k such that tk = 0 but t(k−1) 6= 0. Thus, we
have (1 − g)t(k−1) = utk = 0. So 1 − g is a zero divisor in KG. Hence, the
order of g is finite ([3], Proposition 6).

(i) Let charK = 0. If G is a finite group, then |G|−1 ∈ K. So there would

exist a central idempotent 1
|G| Ĝ in KG, which is a contradiction to Lemma

2.1(d). Hence, KG can not be UN for a nontrivial finite group G. Now, let us
consider the case of infinite group. We observe that, again in light of Lemma
2.1(d), G can not be an Abelian group. So the only case left out is that G
be a non Abelian group. In view of Lemma 2.1(e) and [7, Theorem 3.13, page
54] G must be a locally finite group. As G is locally finite, so KG is von
Neumann regular ring and in particular J(KG) = 0. So, ω(G) is not a quasi
regular ideal. Thus, there must exist an α ∈ ω(G) such that 1 − α /∈ U(KG).
Since KG is UN, we get 1 − α = ut for some u ∈ U(KG) and t ∈ N(KG).
Applying augmentation map we get ω(1 − α) = ω(ut) =⇒ 1 = ω(u)ω(t) =⇒
ω(t) = ω(u)−1, which is absurd. Thus in all the above cases, for KG to be a
UN ring, the group G must be trivial.

The converse part is straight forward, since every field is a UN ring.
(ii) Let charK = p. If G is a finite group, then |G| 6= p′, because if it is

so, then there would exist a central idempotent 1
|G| Ĝ and hence contradicting

Lemma 2.1(d). So, let |G| = pkm with (p,m) = 1. By Cauchy’s Theorem
there exists an element g ∈ G of order p′ such that p′ | m. As (1 + g +

g2 + · · · + g(p
′−1))(1 − g) = 0, so we get (1 + g + g2 + · · · + g(p

′−1)) = ut
for some u ∈ U(KG) and t ∈ N(KG). Applying augmentation map we get

ω(1 + g + g2 + · · · + g(p
′−1)) = ω(ut) =⇒ p′ = ω(u)ω(t) =⇒ ω(t) = p′ω(u)−1,

which is a contradiction, since p′ ∈ U(K). Thus, G must be a p-group. Now
let us consider G to be an infinite group. If G is Abelian, then G should be
p-group, because otherwise there would exist non trivial central idempotents in
KG. If G is non Abelian, then following the method adopted for finite group,
it can be shown that G is a p-group, as desired.
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Conversely, let G be a locally finite p-group and K be a field of character-
istic p. By [3, Proposition 16(ii)], ω(G) is a nil ideal. As is well known that
KG/ω(G) ∼= K, so following Lemma 2.1(c) we get that KG is a UN ring. �

3.2. Group rings

Before taking up the group ring case, we discuss the characteristic of a UN
ring and obtain the following results below.

Lemma 3.2. Let R be a UN ring and n ∈ Z, the set of integers. Then for an
element n ∈ R, either n ∈ U(R) or n ∈ N(R).

Proof. If n /∈ U(R), then n = ut for some u ∈ U(R) and t ∈ N(R). This
amounts to u−1nu = tu =⇒ u−1(1 + 1 + · · ·+ 1︸ ︷︷ ︸

n-times

)u = tu =⇒ n = tu. Thus, n

is strongly UN and in particular n ∈ N(R). �

Lemma 3.3. Let R be a UN ring and charR = n. Then either n = 0 or
n = pα for some prime p and in this case p ∈ J(R).

Proof. If n 6= 0, then we can write n = pα1
1 pα2

2 · · · p
αk

k , where pi’s are primes.
Since n = 0 in R, at least one of the pi’s is nilpotent in R. It can be easily seen
that this is possible only when k = 1. Thus, charR = pα. Now, if charR = pα,
then p ∈ N(R). Since, xp = px for all x ∈ R, we get xp ∈ N(R) for all x ∈ R.
So, 1− xp ∈ U(R) for all x ∈ R. Thus, p ∈ J(R) ([5], Lemma 4.1). �

Now let us consider the group ring of a group G over an arbitrary ring R
(which may not necessarily be a field).

Theorem 3.4. Let R be a ring and G be a non trivial group. If RG is UN,
then R is UN of characteristic pα, G is a p-group and p ∈ J(R); the converse
holds if G is locally finite.

Proof. Let RG be UN, then by augmentation map ω : RG → R, we obtain
that R is a homomorphic image of RG. So, by Lemma 2.1(b), R is UN. Going
by the proof of Theorem 3.1, it can be seen that G is a torsion group. Now
let if possible charR = 0, then by Lemma 3.2 all n( 6= 0) ∈ Z are invertible
in R. Thus |g|−1 ∈ R for all g ∈ G. Following the proof of Theorem 3.1, G
can neither be a finite group nor an infinite Abelian group. Now, let G be an
infinite non Abelian group and let the order of an element g( 6= 1) ∈ G be m, for
some positive integer m. So, we have that (1+g+g2 + · · ·+g(m−1))(1−g) = 0
=⇒ 1 + g + g2 + · · · + g(m−1) = ut for some u ∈ U(RG) and t ∈ N(RG) =⇒
ω(1 + g + g2 + · · ·+ g(m−1)) = ω(ut) =⇒ m = ω(u)ω(t) =⇒ ω(t) = mω(u)−1,
which is not possible, since m ∈ U(R). Thus, charR 6= 0. By Lemma 3.3, if
charR 6= 0, then charR = pα. In this case also following the proof of Theorem
3.1, we can arrive at the result that G can not have p′ elements and hence, G is
a p-group. By Lemma 3.3, we get p ∈ J(R). Conversely, let R be a UN ring of
characteristic pα, G a locally finite p-group and p ∈ J(R). By [3, Proposition
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16(ii)], ω(G) is a nil ideal. By augmentation map ω : RG→ R, we observe that
RG/ω(G) ∼= R. Because R is UN, we get RG is UN (by Lemma 2.1(c)). �

Since an Abelian torsion group is locally finite, for the commutative group
rings we get:

Corollary 3.5. Let R be a commutative ring and G be a non trivial Abelian
group. Then, RG is UN if and only if R is UN of characteristic pα, G is a
p-group and p ∈ J(R).

The above results resemble to the result obtained for local group rings by
W. K. Nicholson in [6]. But we give below group ring specific examples which
show that a UN group ring may not be local and a local group ring may not
be UN.

Example 3.6. Let us consider the group ring RG, where R = M2(Z2) (Z2 be
the ring of integers modulo 2) and G = C2 be a cyclic group of order 2. By the
mapping φ : M2(Z2)C2 →M2(Z2C2) defined by

φ
(
Σki=1(Aigi)

)
= (cij),

where cij = Σkt=1a
(m)
ij gm and a

(l)
ij is the i-th row and j-th column entry of At;

it can be seen that M2(Z2)C2
∼= M2(Z2C2).

Now e =
(
1 1+g
0 0

)
is a non zero idempotent in M2(Z2C2). And hence,

M2(Z2C2) ∼= M2(Z2)C2 = RG is not local. By [1, Corollary 7], M2(Z2) is
UN and thus by Theorem 3.4 it follows that RG = M2(Z2)C2 is a UN ring.

Example 3.7. Let R = Z(p), i.e., the localization of the ring of integers at a
prime ideal (p) and G = Cp be a cyclic group of order p, where p is a prime.
We consider the group ring RG. By [6, Theorem], RG is a local ring.

It is well known that R is a domain and hence a reduced ring; but R is not
a field. Since a reduced UN ring is a division ring, we get that R is not UN.
Thus, by Theorem 3.4, RG is not UN.
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