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INDUCTIVE LIMIT IN THE CATEGORY OF

C∗-TERNARY RINGS

Arpit Kansal, Ajay Kumar, and Vandana Rajpal

Abstract. We show the existence of inductive limit in the category of

C∗-ternary rings. It is proved that the inductive limit of C∗-ternary rings
commutes with the functor A in the sense that if (Mn, φn) is an inductive

system of C∗-ternary rings, then lim−→A(Mn) = A(lim−→Mn). Some local

properties (such as nuclearity, exactness and simplicity) of inductive limit

of C∗-ternary rings have been investigated. Finally we obtain lim−→M∗∗
n =

(lim−→Mn)∗∗.

1. Introduction

A C∗-ternary ring is a complex Banach space M , equipped with a ternary
product (x, y, z) → [x, y, z] of M3 into M which is linear in the outer vari-
ables, conjugate linear in the middle variable, associative in the sense that
[[x, y, z], u, v] = [x, y, [z, u, v]] = [x, [u, z, y], v] satisfying ||[x, x, x]|| = ||x||3 and
||[x, y, z]|| ≤ ||x||||y||||z||. We refer to [13], [1], [9] and [11] for all necessary
background related to C∗-ternary ring.

A closely related structure to C∗-ternary ring is the so-called ternary rings
of operators (TROs) that is a norm closed subspace of B(H,K), the set of all
bounded operators from a Hilbert space H to a Hilbert space K which is closed
under the ternary product (x, y, z) → xy∗z. Clearly, the class of C∗-ternary
rings includes TROs via the ternary product [x, y, z]→ xy∗z and in particular
C∗-algebras. In [5], Hamana showed that a TRO can be identified with the
off diagonal corner of its linking C∗-algebra. Inductive limit in the category of
TROs was studied in [7] and [3]. In [8], Kaur and Ruan studied TROs and their
connections with their linking C∗-algebras. Using results obtained by Kaur and
Ruan, authors in [7] showed that under certain restrictions inductive limit of
TROs behaves well with some local properties such as simplicity, nuclearity and
exactness. Pluta and Russo [11] extended the Hamana’s notion of linking C∗-
algebras to the category of C∗-ternary rings. Following construction is taken
from [11].
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Given C∗-ternary ring M , let

E(M) = End(M)⊕ [End(M)]
op
,

where the notation V for a complex vector space means that the scalar multi-
plication in V is (λ, v)→ λv and End(M) is a set of all endomorphisms on M
equipped with the operator norm. For φ⊕ ψ ∈ E(M)

‖φ⊕ ψ‖ = max{‖φ‖, ‖ψ‖}.
For g, h ∈M , define L(g, h) = [g, h, ·], R(g, h) = [·, h, g],

l(g, h) = (L(g, h), L(h, g)) ∈ E(M)

and

r(g, h) = (R(h, g), R(g, h)) ∈ E(M)op.

Next, let L = L(M) and R = R(M) denote the closures of span{l(g, h) :
g, h ∈ M} ⊂ E(M) and span{r(g, h) : g, h ∈ M} in E(M)op, respectively. Let
A = (A1, A2) ∈ E(M), B = (B1, B2) ∈ E(M)op, and f ∈M . Then M is a left
E(M)-module via

(A, f)→ A · f = A1f

and a right E(M)op-module via

(f,B)→ f ·B = B1f.

Let M denote the vector space M with the element f denoted by f and with

the scalar multiplication defined by (λ, f) → λ ◦ f = λf . Then M is a left
E(M)op-module via

(B, f)→ B · f = B2f

and a right E(M)-module via

(f,A)→ f ·A = A2f.

Let

A = A(M) = L(M)⊕M ⊕M ⊕R(M)

and write the elements a = (A, f, g,B) of A as a matrix

a =

[
A f
g B

]
.

Define multiplication and involution in A by

aa′ =

[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + l(f, g′) A · f ′ + f ·B′
g ·A′ +B · g′ r(g, f ′) +B ◦B′

]
and

a# =

[
A g

f B

]
.

In [11, Proposition 2.7], it is shown that A(M) is a C∗-algebra and M is the
off diagonal corner of C∗-algebra A(M). Moreover, if M is a TRO, then A(M)
is ∗-isomorphic to the Hamana’s linking C∗-algebra.



INDUCTIVE LIMIT OF C∗-TERNARY RINGS 139

We show that M → A(M), (M
φ−→ N) → (A(M)

A(φ)−−−→ A(N)) where the
map A(φ) is defined in Proposition 2.4 is an exact functor from the category
of C∗-ternary rings to the category of C∗-algebras. We then study the induc-
tive limits in the category of C∗-ternary rings and prove its existence. The
commutativity of the inductive limit with the functor A is proved. Using this
commutativity property, it is shown that local properties such as nuclearity,
exactness and simplicity behaves well with the inductive limit of C∗-ternary
ring. In passing we obtain the ideal structure of inductive limits of C∗-ternary
ring. Lastly, we show that inductive limit behaves well with biduals.

2. Inductive limits in the category of C∗-ternary rings

Definition 2.1. A linear mapping φ between C∗-ternary rings is called a
(ternary) homomorphism if φ preserves the ternary structure, i.e.,

φ([x, y, z]) = [φ(x), φ(y), φ(z)].

The following proposition is a restatement of ([1], Corollary 4.8).

Proposition 2.2. Let M and N be two C∗-ternary rings and φ : M → N a
homomorphism. Then φ(M) is a norm-closed sub-C∗-ternary ring of N .

If we are given two C∗-ternary rings M and N and a surjective homomor-
phism φ : M → N , then in ([11], Lemma 2.6), it was shown that we may define
a ∗-homomorphism L(φ) : L(M)→ L(N) and R(φ) : R(M)→ R(N) by letting

L(φ)

(∑
i

([gi, hi, ·][hi, gi, ·])

)
=
∑
i

([φ(gi), φ(hi), ·], [φ(hi), φ(gi), ·])

and

R(φ)

(∑
i

([·, gi, hi][·, hi, gi])

)
=
∑
i

([·, φ(gi), φ(hi)], [·, φ(hi), φ(gi)]).

If in the above φ is not surjective, then we can replace N by φ(N), which is a
norm-closed sub-C∗-ternary ring. Therefore we have:

Proposition 2.3. Let M and N be two C∗-ternary rings and φ : M → N be
a homomorphism. Then there is a C∗-homomorphism

A(φ)

([
A f
g B

])
=

[
L(φ)(A) φ(f)

φ(g) R(φ)(B)

]
with L(φ) : L(M)→ L(N) and R(φ) : R(M)→ R(N) as defined above.

The following result which is an immediate consequence of the last proposi-
tion implies that A(M) is determined up to isomorphisms. We have a functor

M → A(M), (M
φ−→ N) → (A(M)

A(φ)−−−→ A(N)) from the category of C∗-
ternary rings to the category of C∗-algebras.
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Proposition 2.4. Let M and N be two C∗-ternary rings. Then if M is iso-
morphic to N as C∗-ternary rings, then A(M) is C∗-isomorphic to A(N).

Proof. Let φ : M → N be a ternary isomorphism. Then there is a unique C∗-
homomorphism A(φ) defined in the last proposition. Suppose a ∈ ker(A(φ))

then L(φ)(A) = 0, φ(f) = 0, φ(g) = 0 and R(φ)(B) = 0. Since φ is one to one,
we have f = 0, g = 0 and B ∈ ker(R(φ)). Now we claim that φ(f ′ ·B) = 0 for
all f ′ ∈M . Suppose first that B = r(g, h). Then φ(f ′ ·B) = φ(R(g, h)(f ′)) = 0
since R(φ)(B) = 0. By the same argument, if B =

∑
i r(gi, hi), then φ(f ′ ·B) =

0. Now suppose B ∈ R(M), let ε > 0 and choose B′ =
∑
i r(gi, hi) with

‖B −B′‖ < ε. Then

‖φ(f ′ ·B)‖ = ‖φ(f ′ · (B −B′))‖ ≤ ε‖f ′‖.

Thus φ(f ′ ·B) = 0 for all f ′ ∈M , and therefore using ([11], Proposition 2.3(iii))
we have span〈M |M〉 ◦B = 0 where 〈f |g〉 = r(f, g). Since span〈M |M〉 is dense
in R(M), it follows that R(M) ◦ B = 0, and hence B = 0. Similarly, A = 0.
This shows that A(φ) is one to one. It is easy to see that since φ is onto, so
are L(φ) and R(φ), and hence A(φ). �

Definition 2.5. A subspace I in a C∗-ternary ring M is called an ideal pro-
vided [I,M,M ]+ [M, I,M ]+ [M,M, I] ⊂ I. By an ideal, we shall always mean
a closed ideal.

Let M be a C∗-ternary ring and I be an ideal of M . From ([6], Page 1135)
it is known that every element of C∗-ternary ring I has a cube root. So using
associativity and ([11], Lemma 1.1(iii)), the following is immediate.

Lemma 2.6. For a C∗-ternary ring M and an ideal I of M , A(I) is an ideal
of C∗-algebra A(M).

Remark 2.7. Let I be a closed subspace of M satisfying [M,M, I]+[I,M,M ] ⊂
I. Then as above using cube root in I, it can be shown that A(I) is an ideal in
A(M). Therefore it will have an approximate unit. So we get {dλ} in R(M)
such that xdλ → x for all x ∈ I. Thus we may approximate every x ∈ I by
sums of elements of the form xr(g, h) with g, h ∈ I. Now using associativity, it
follows that [M, I,M ] ⊂ I.

For an ideal I of M , it follows from ([1], Proposition 4.5) that M/I is a
C∗-ternary ring. This can also be concluded from the representation theorem
of Zettl ([13], Theorem 3.1) and the fact that the quotient of a TRO is a
TRO ([4], Proposition 2.2). Moreover, observe that L(M/I) = L(M)/L(I)
and R(M/I) = R(M)/R(I) which gives the following.

Proposition 2.8. Let I be an ideal of M . Then the quotient M/I is a C∗-
ternary ring with A(M/I) = A(M)/A(I)

As a consequence of the above proposition, we have the following.
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Proposition 2.9. Let M be a C∗-ternary ring and I an ideal of M . The exact
sequence

0→ I
i−→M

π−→M/I → 0

induces an exact sequence of C∗-algebras

0→ A(I)
A(i)−−−→ A(M)

A(π)−−−→ A(M/I)→ 0.

Proof. Analogous to what we did in proof of Proposition 2.4, injectivity of i
gives injectivitity of A(i) and surjectivity of π gives the surjectivity of A(π) so
we only need to show exactness at A(M). Since

0→ A(I)→ A(M)
π−→ A(M)/A(I)→ 0

is obviously an exact sequence of C∗-algebras where π is the natural quotient
homomorphism, the exactness of our sequence follows from Proposition 2.8. �

The following corollary is an immediate consequence of the last proposition.

Corollary 2.10. (1) The functor M → A(M), (M
φ−→ N) → (A(M)

A(φ)−−−→
A(N)) is an exact functor from the category of C∗-ternary rings to the category
of C∗-algebras.

(2) Every split exact sequence of C∗-ternary rings induces a split exact se-
quence of C∗-algebras.

(3) For all C∗-ternary rings M and N , A(M ⊕N) = A(M)⊕A(N).

We now proceed to show the existence of inductive limits in category of C∗-
ternary rings. Let (Mn, φn) be an inductive system of C∗-ternary rings. Since
L, R andA are functors, (L(Mn), L(φn)), (R(Mn), R(φn)) and (A(Mn),A(φn))
are inductive sequences of C∗-algebras. For convenience of the reader, we recall
definition and universal property of inductive limits.

Inductive Limits. An inductive limit of an inductive sequence (Xn, φn) in a
category C is a system (X,µn) where X∞ is an object in C and µn : Xn → X∞
is a morphism in C for each n ∈ N satisfying the following properties:

• The following diagram commutes for all n

Xn Xn+1

X∞

φn

Φn Φn+1

• If (Y, (λn)) is an inductive system in C which is compatible with the
system (Xn, φn) in the sense that λn = λn+1 ◦ φn, then there exists a
unique λ : X → Y such that λ ◦ µn = λn for all n.

The existence of inductive limits in the category of C∗-algebras is well known
(see e.g. ([12], Proposition 6.2.4)). Let (A∞, µn) be the inductive limit of the

inductive system (A(Mn),A(φn)). Then A∞ =
⋃
n µn(A(Mn)). Let in : Mn →
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A(Mn) be the standard corner embedding of Mn. Let M∞ =
⋃
n λn(Mn)) ⊂

A∞ where λn = µn ◦ in : Mn →M∞ is a homomorphism.

Theorem 2.11. Let (Mn, φn) be an inductive system of C∗-ternary rings.
Then lim−→(Mn, φn) exists.

Proof. We identify Mn with its image in A(Mn). For every x ∈Mn, we have

λn+1 ◦ φn(x) = µn+1 ◦ in+1 ◦ φn(x)

= µn+1 ◦ A(φn)(x)

= µn ◦ in(x)

= λn(x).

Let (N,αn) be another system satisfying αn+1◦φn = αn where αn : Mn → N is
a homomorphism for all n. Since (A∞, µn) is the inductive limit of the inductive
sequence (A(Mn),A(φn)) and A(αn+1) ◦ A(φn) = A(αn+1 ◦ φn) = A(αn),
there exists one and only one ∗-homomorphism µ : A∞ → A(N) satisfying
µ ◦ µn = A(αn), i.e., the following diagram

A(Mn) A∞

A(N)

µn

A(αn)
µ

is commutative for all n. Note that the restriction µ̃ of µ to M∞ is a homomor-
phism and satisfies µ̃◦λn = αn. Moreover, uniqueness of µ gives the uniqueness
of µ̃. Hence, (M∞, λn) is the inductive limit of (Mn, φn). �

If the connecting maps of an inductive system (Mn, φn) are injective, then
we can assume that Mn ⊂ Mn+1 and that φn are inclusion maps. As an
application of the last theorem, we have the following corollary.

Corollary 2.12. Let (Mn, φn) be an inductive system of C∗-ternary rings

with injective connecting maps. Let M∞ =
⋃
nMn and in : Mn → M∞ be the

inclusion map. Then (M∞, in) is the inductive limit of the inductive system
(Mn, φn).

Given an inductive system (Mn, φn) of C∗-ternary rings, the ternary mor-
phism φn : Mn →Mn+1 induces the C∗-morphism L(φn) : L(Mn)→ L(Mn+1).
Thus (L(Mn), L(φn)) becomes an inductive system of C∗-algebras. Let iL(Mn) :
L(Mn) → A(Mn) be the natural embedding. Let ψn = µn ◦ iL(Mn) and

L∞ =
⋃
n ψn(L(Mn)). The verification of the next proposition is straight-

forward.

Proposition 2.13. Let (Mn, φn) be an inductive system of C∗-ternary rings
with inductive limit (M∞, λn). Then (L∞, ψn) is the inductive limit of the
inductive system (L(Mn), L(φn)).
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Next, we show that inductive limit of C∗-ternary rings behaves well with
the functor L.

Theorem 2.14. Let (Mn, φn) be an inductive system of C∗-ternary rings.
Then lim−→L(Mn) = L(lim−→Mn).

Proof. We have the following:

L(M∞) = span

{
l

(⋃
n

λn(Mn),
⋃
n

λn(Mn)

)}

= span

l
(⋃

n

λn(Mn),
⋃
n

λn(Mn)

)
= span

l
(⋃

n

µn ◦ in(Mn),
⋃
n

µn ◦ in(Mn)

)
=
⋃
n

span {l(µn ◦ in(Mn), µn ◦ in(Mn))}

=
⋃
n

span {µn ◦ in(l(Mn,Mn))}

=
⋃
n

µn ◦ iL(Mn)(L(Mn))

=
⋃
n

ψn(L(Mn))

= L∞

which shows that lim−→L(Mn) = L(lim−→Mn). Moreover, the homomorphism ζn :

L(Mn)→ L(M∞) are given by ζn = L(λn) = L(µn ◦ iMn) = µn ◦ iL(Mn) for all
n. �

Similarly we can obtain the following result by mimicking the proof of last
theorem.

Theorem 2.15. Let (Mn, φn) be an inductive system of C∗-ternary rings.
Then lim−→R(Mn) = R(lim−→Mn).

We refer the reader to [1] for a discussion on tensor product of C∗-ternary
rings. We note that C∗-algebra Mr given in [1] which is defined as closed
span of {[·, g, h] : g, h ∈ M} is ∗-isomorphic to R(M). In [1, Section 5], it
was shown that there exists a maximum C∗-norm ‖ · ‖max on M ⊗ N and a
minimum C∗-norm ‖ · ‖min on M ⊗N satisfying (M ⊗max N)r = Mr ⊗max Nr

and (M ⊗min N)r = Mr ⊗min Nr.
The following two definitions are from ([1], Definitions 5.7 and 5.15).
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Definition 2.16. A C∗-ternary ring M will be called nuclear if for every C∗-
ternary rings N , there is a unique C∗-norm on M ⊗N .

Definition 2.17. We say that a C∗-ternary ring M is exact if for every exact
sequence

0→ N1 → N2 → N3 → 0

of C∗-ternary rings

0→M ⊗min N1 →M ⊗min N2 →M ⊗min N3 → 0

is also exact.

As a consequence of Theorem 2.14, we have the following.

Corollary 2.18. (1) Let (Mn, φn) be an inductive system of nuclear C∗-
ternary rings. Then M = lim−→(Mn, φn) is also nuclear.

(2) Let (Mn, φn) be an inductive system of exact C∗-ternary rings. Then
M = lim−→(Mn, φn) is also exact. Moreover, if the connecting maps are injective,
then converse also holds.

Proof. (1) In view of Theorem 2.11 and ([1], Corollary 5.14), we only need to
show that Mr is nuclear which is clear by Theorem 2.15.

(2) It follows immediately from Theorem 2.15 and the fact that a C∗-ternary
ring M is exact if and only if Mr is exact C∗-algebra. For converse, recall that
every C∗-subalgebra of an exact C∗-algebra is exact. Now apply Corollary 2.12
to conclude the result. �

Our next aim is to see if the identity lim−→A(Mn) = A(lim−→Mn) holds for an in-

ductive sequence (Mn, φn) of C∗-ternary rings and the functor A. Let (Mn, φn)
be an inductive system of C∗-ternary rings. If (A∞, µn) is the inductive limit of
the inductive system (A(Mn),A(φn)), then from Theorem 2.11, it is known that

(M∞, λn) is the inductive limit of (Mn, φn) where M∞ =
⋃
n λn(Mn)) ⊂ A∞

and λn = µn ◦ in : Mn → M∞ is a homomorphism. From ([12], Proposition
6.2.4), ‖µn(x)‖ = limm→∞ ‖A(φm,n)(x)‖ for all n. For y ∈Mn, we have

‖λn(y)‖ = ‖µn ◦ in(y)‖ = lim
m→∞

‖A(φm,n)(in(y))‖ = lim
m→∞

‖φm,n(y)‖

which proves the following.

Lemma 2.19. Let (Mn, φn) be an inductive system of C∗-ternary rings with
inductive limit (M∞, λn). Then

ker(λn) = {x ∈Mn : lim
m→∞

‖φm,n(x)‖ = 0}.

Theorem 2.20. If (Mn, φn) is an inductive system of C∗-ternary rings, then
lim−→A(Mn) = A(lim−→Mn) where the inductive limits are taken in the correspond-
ing categories.
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Proof. First observe that for every n ∈ N, A(λn+1) ◦ A(φn) = A(λn). Thus
(A(M∞),A(λn)) is an inductive system which is compatible with the system
(A(Mn),A(φn)). Hence by universal property of inductive limit we get a unique
∗-homomorphism µ : lim−→A(Mn)→ A(lim−→Mn) and the following commutative
diagram:

A(Mn) lim−→A(Mn)

A(lim−→Mn)

µn

A(λn)
µ

SinceA(lim−→Mn) =
⋃
nA(λn)(A(Mn)) therefore by ([12], Proposition 6.2.4(iv)),

the map µ is surjective. Again by ([12], Proposition 6.2.4(iv)), to show, µ is
injective we only need to show that ker(A(λn)) ⊂ ker(µn). Let x = [ x1 x2

x3 x4
] be

an element of ker(A(λn)). Then by above lemma, limm→∞ ‖φm,n(xj)‖ = 0,
j = 2, 3 and by ([12], Proposition 6.2.4(iii)),

lim
m→∞

‖L(φm,n)(x1)‖ = 0, lim
m→∞

‖R(φm,n)(x4)‖ = 0.

Thus we get,

lim
m→∞

‖A(φm,n)(x)‖ = lim
m→∞

∥∥∥∥L(φm,n)(x1) φm,n(x2)

φm,n(x3) R(φm,n)(x4)

∥∥∥∥
≤ lim

m→∞

(
‖L(φm,n)(x1)‖+ ‖φm,n(x2)‖

+ ‖φm,n(x3)‖+ ‖R(φm,n)(x4)‖
)

= 0

which implies x ∈ ker(µn) and therefore µ is an isomorphism. �

We shall next study the connection between ideals of C∗-ternary ring M
and A(M). In [1, Proposition 4.2], it was shown that the map I → Ir is a one-
to-one correspondence between closed ideals of M and Mr. It is not difficult
to see that the map I → A(I) is a one-to-one correspondence between closed
ideals of M and A(M). Hence we have the following result.

Proposition 2.21. Let M be a C∗-ternary ring. Then there are one-to-one
correspondences between

(1) closed ideals in the C∗-ternary ring M .
(2) closed ideals in the C∗-algebra Mr.
(3) closed ideals in the C∗-algebra A(M).

As a consequence of the above proposition and Theorem 2.15, we have the
following.

Corollary 2.22. Every closed ideal of inductive limit M = lim−→(Mn, φn) is an
inductive limit of ideals of Mn.
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Proof. Let I be a closed ideal of M . Since every ideal of inductive limit of
C∗-algebras is an inductive limit of ideals of C∗-algebras therefore A(I) being
an ideal of the inductive limit of (A(Mn),A(φn)) is an inductive limit of ideals
of A(Mn). Now apply Theorem 2.20 to conclude the result. �

Recall that a C∗-ternary ring M is called simple if M has no non trivial
closed ideal. Note that, M is simple if and only if A(M) is simple C∗-algebra.

Corollary 2.23. Let (Mn, φn) be an inductive system of simple C∗-ternary
rings. Then M = lim−→(Mn, φn) is also simple.

Proof. In view of Theorem 2.15, it is enough to show that lim−→A(Mn) is sim-
ple C∗-algebra which follows from the fact that inductive limit of simple C∗-
algebras is again simple. �

As an application of Proposition 2.21, we classify closed ideals of C∗-ternary
ring of continuous functions vanishing at infinity and Mn(M) space of n × n
matrices with entries from M .

Example 2.24. Let X be a locally compact Hausdorff topological space and
M be a C∗-ternary ring. Let f : X →M be a continuous function. Recall that
f is said to vanish at infinity if for each ε > 0, there exists a compact subset K of
X such that ||f(x)|| < ε whenever x /∈ K. Denote, C0(X,M) := {f : X →M :
f is continuous and vanishes at infinity}. Note that C0(X,M) is a C∗-ternary
ring with the ternary product defined as [f1, f2, f3](x) → [f1(x), f2(x), f3(x)].
Note that by the map θ : (C0(X,M))r → C0(X,Mr) defined as θ([·, f, g])(x) =
[·, f(x), g(x)], (C0(X,M))r is isomorphic to C0(X,Mr) as C∗-algebras. For
each x ∈ X, let Ix be an ideal of M . Then the set of f ∈ C0(X,M) satisfying
f(x) ∈ Ix is an ideal of C0(X,M). Conversely, let I be an ideal of C0(X,M).
In view of ([10], V.26.2.1) and Proposition 2.21, it follows that that Ir is of
the form {f ∈ C0(X,Mr) : f(x) ∈ Irx,∀x ∈ X} where for every x ∈ X, Ix
is a closed ideal of M . Since {f ∈ C0(X,Mr) : f(x) ∈ Irx,∀x ∈ X} = {f ∈
C0(X,M) : f(x) ∈ Ix,∀x ∈ X}r so every ideal of C0(X,M) is of the form
{f ∈ C0(X,M) : f(x) ∈ Ix,∀x ∈ X}.

Example 2.25. For a C∗-ternary ring M , let Mn(M) denote the space of n×n
matrices with entries from M . Define,

[A,B,C]ij =

n∑
l,k=1

[Ail, Blk, Ckj ].

Mn(M) with this ternary operation is a C∗-ternary ring. Moreover by Corollary
2.10, A(Mn(M)) = Mn(A(M)). From Proposition 2.21, it follows that closed
ideals of Mn(M) are of the form Mn(I) where I is a closed ideal of M . In
particular, if M is simple C∗-ternary ring, then Mn(M) is also simple.

Now, we consider biduals of C∗-ternary rings and study the commutativity
of biduals with inductive limits. Let M be a C∗-ternary ring. In [9], it was
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proved that second dual of a C∗-ternary ring is again a C∗-ternary ring. Our
aim in this section is to see if the identity lim−→M∗∗n = (lim−→Mn)∗∗ holds for an

inductive system (Mn, φn) of C∗-ternary rings. Keeping in mind that every
injective homomorphism of C∗-ternary rings is an isometry, the idea of the
proof of next proposition is similar to the proof of ([2], Lemma 2.1), we shall
sketch an outline of a proof.

Proposition 2.26. If (Mn, φn) is an inductive system of C∗-ternary rings
with injective connecting maps, then lim−→M∗∗n = (lim−→Mn)∗∗.

Proof. Observe that for every n ∈ N, the injective map φn : Mn → Mn+1

induces the canonical injective map φ∗∗n : M∗∗n → M∗∗n+1. Thus (M∗∗n , φ∗∗n ) be-
comes an inductive system of C∗-ternary rings with injective connecting maps.
Let ((M∗∗)∞, µn) be the inductive limit of this inductive system and (M∞, λn)
be the inductive limit of (Mn, φn). Since the connecting maps φ′ns are in-
jective therefore λn and µn are also injective. Note that λ∗∗n+1 ◦ φ∗∗n = λn

∗∗.
Thus (M∗∗∞ , λ

∗∗
n ) is an inductive system which is compatible with the system

(M∗∗n , φ∗∗n ). Hence by universal property of inductive limit we get a unique
homomorphism µ : lim−→M∗∗n → (lim−→Mn)∗∗ and the following commutative dia-
gram:

M∗∗n lim−→M∗∗n

(lim−→Mn)∗∗

µn

λ∗∗
n

µ

Finally it is not difficult to check that µ is an isomorphism and therefore
lim−→M∗∗n = (lim−→Mn)∗∗. �
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