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ZERO SUMS OF DUAL TOEPLITZ PRODUCTS ON THE

ORTHOGONAL COMPLEMENT OF THE DIRICHLET SPACE

Young Joo Lee

Abstract. We consider dual Toeplitz operators acting on the orthogonal

complement of the Dirichlet space on the unit disk. We give a character-
ization of when a finite sum of products of two dual Toeplitz operators is

equal to 0. Our result extends several known results by using a unified
way.

1. Introduction

Let D be the unit disk in the complex plane C and dA denote the normalized
Lebesgue measure on D. The Sobolev space W 1,2 is the completion of the space
of all smooth functions f on D for which∣∣∣∣∫

D

f dA

∣∣∣∣2 +

∫
D

(∣∣∣∣∂f∂z
∣∣∣∣2 +

∣∣∣∣∂f∂z̄
∣∣∣∣2
)
dA <∞.

As is well known, the space W 1,2 is a Hilbert space with the inner product

〈f, g〉 =

∫
D

fdA

∫
D

ḡ dA+

∫
D

(
∂f

∂z

∂g

∂z
+
∂f

∂z̄

∂g

∂z̄

)
dA.

The Dirichlet space D is the closed subspace of W 1,2 consisting of all holomor-
phic functions f ∈ W 1,2 with f(0) = 0. Let P denote the orthogonal projection
from W 1,2 onto D . Put

L 1,∞ =

{
u ∈ W 1,2 : u,

∂u

∂z
,
∂u

∂z̄
∈ L∞

}
,

where Lp = Lp(D, dA) denotes the usual Lebesgue space on D and the deriva-
tives are taken in the distribution sense.
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Given u ∈ L 1,∞, the dual Toeplitz operator Su with symbol u is defined on
D⊥ by

Suf = (I − P )(uf)

for functions f ∈ D⊥. Then, for u ∈ L 1,∞, it is easy to check that the dual
Toeplitz operator Su is a bounded linear operator on D⊥.

Some algebraic properties for dual Toeplitz operators have been well studied
on various function spaces. In [8], Stroethoff and Zheng characterized the
(semi)-commuting dual Toeplitz operators and obtained a characterization of
when a product of two dual Toeplitz operators is another dual Toeplitz operator
on the orthogonal complement of the Bergman space on the unit disk. Also,
the corresponding results on the Hardy space have been obtained in [1] and
[4]. More recently, Kong and Lu [5] recovered several known results concerning
the commutativity or product problem by characterizing zero sums of products
of two dual Toeplitz operators on the orthogonal complement of the Bergman
space or Hardy space.

Also, the corresponding problems have been studied for dual Toeplitz oper-
ators acting on the orthogonal complement of the Dirichlet space. Yu and Wu
[12] characterized harmonic symbols of (semi-)commuting dual Toeplitz oper-
ators. They also obtained a characterization of when a product of two dual
Toeplitz operators with harmonic symbols is another dual Toeplitz operator.
Later, Yu [10] extended the results of [12] to general symbols by using complete
different arguments from those used in [12].

Motivated by these results, in this paper, we consider a more general class
of operators that include (semi-)commutators or products of two dual Toeplitz
operators. More explicitly, we consider operators which are finite sums of
products of two dual Toeplitz operators with general symbols and then obtain
a characterization of when such an operator is equal to 0. Our results extend
several known results mentioned above by providing a unified way of treating
them.

In Section 2, we collect some preliminary results which will be useful in
our characterization. In Section 3, we state and prove our main result; see
Theorem 3. Also, as applications of our result, we obtain several consequences
and recover known results; see Corollaries 4 and 5.

2. Preliminaries

Since each point evaluation is a bounded linear functional on D , there cor-
responds to every z ∈ D a unique function Kz ∈ D which has the following
reproducing property

f(z) = 〈f,Kz〉
for every f ∈ D . It is known that the function Kz can be given by

Kz(w) = log

(
1

1− z̄w

)
, w ∈ D.
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Using the explicit formula above for Kz, one can see that P can be represented
by the integral formula

(1) Pψ(z) =

∫
D

z

1− zw̄
∂ψ

∂w
(w) dA(w), z ∈ D

for functions ψ ∈ W 1,2; see [6] or [9] for details and related facts.
It is known that each f ∈ W 1,2 admits the following polar decomposition

f(reiθ) =

∞∑
k=−∞

fk(r)eikθ,

where fk(r) = 1
2π

∫ 2π

0
f(reiθ)e−ikθ dθ. Moreover,

∑
|k|≤n fk(r)eikθ converges

to f in W 1,2 as n → ∞. Also, it is known that the radial limit f(eiθ) :=
limr→1 f(reiθ) exists for almost every θ and f(eiθ) ∈ L1(∂D). For f ∈ W 1,2

and k ∈ Z, the set of all integers, we let

fk(1) =
1

2π

∫ 2π

0

f(eiθ)e−ikθ dθ

and put A = A0 + C, where

A0 =

{∑
k∈Z

[fk(r)− fk(1)r|k|]eikθ : f(reiθ) =
∑
k∈Z

fk(r)eikθ ∈ W 1,2

}
.

Then, it is known that uA0 ⊂ A0 for all u ∈ L 1,∞ and Pψ = 0 for all ψ ∈ A0.
Furthermore, we have the following decomposition for W 1,2:

W 1,2 = D ⊕D ⊕A.(2)

See [2] or [11] for details and more information.

3. Main result

Given u ∈ L 1,∞, the Toeplitz operator Tu, the Hankel operator Hu and
dual Hankel operator Ru with symbol u are defined, respectively, by

Tuf = P (uf),

Huf = (I − P )(uf),

Rug = P (ug)

for functions f ∈ D and g ∈ D⊥. Then one can check that the operators
Tu : D → D , Hu : D → D⊥ and Ru : D⊥ → D are all bounded linear
operators. Also, given u, v ∈ L 1,∞, it is easy to see that the following useful
relation holds on D⊥:

SuSv = Suv −HuRv.(3)

Given u ∈ L 1,∞, it is known that Ru = 0 if and only if u ∈ D⊥; see Theorem
1 of [10]. Since the set {Ka : a ∈ D} spans a dense subset of D , we check that
R∗uKa = 0 for all a ∈ D if and only if u ∈ D⊥. The following shows that the
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same is true even though R∗uKa = 0 for some nonzero a, which will be useful
in our proof.

Proposition 1. Let u ∈ L 1,∞ and a ∈ D be nonzero. Then R∗uKa = 0 if and
only if u ∈ D⊥.

Proof. First assume R∗uKa = 0. Decompose u as u = f+ ḡ+ϕ, where f, g ∈ D ,
ϕ ∈ A as in (2). Since R∗uKa = 0, we have 〈R∗uKa, F 〉 = 0 for all F ∈ D⊥.
Write f(z) =

∑∞
j=1 bjz

j for the Taylor series expansions of f . By (1), we note

zn ∈ D⊥ and

P ((ḡ + ϕ)zn) = 0

for all n = 0, 1, 2, . . .. Also, by a simple calculation using (1), we can see that
for integers m,n ≥ 0

P (z̄mzn)(z) =

{
zn−m if n > m,

0 if n ≤ m

for z ∈ D. It follows that

P (fzn)(a) =
∞∑
j=1

bjP (zjzn)(a) =
∞∑

j=n+1

bja
j−n

for all n = 0, 1, 2, . . .. Now, taking F = zn and using the above, we can check
that

0 = 〈R∗uKa, zn〉
= 〈Ka, P (uzn)〉
= 〈Ka, fzn〉

= P (fzn)(a)

= a−n
∞∑

j=n+1

bjaj

for all n = 0, 1, 2, . . ., which implies bj = 0 for all j ≥ 1. Thus f = 0 and
u = ḡ + ϕ ∈ D⊥, as desired. Conversely, if u ∈ D⊥, then Ru = 0 and then
R∗uKa = 0 holds. The proof is complete. �

Given two vectors x, y in a Hilbert space H with an inner product ( , ), the
rank one operator x⊗ y is defined on H by

[x⊗ y]z = (z, y)x

for functions x ∈ H. We note that the following operator equation

L1(x⊗ y)L2 = (L1x)⊗ (L∗2y)(4)

holds for bounded operators L1, L2. Also, given nonzero vectors x1, x2, y1, y2 ∈
H, we observe that x1 ⊗ y1 = x2 ⊗ y2 if and only if there exists a nonzero
α ∈ C such that x1 = αx2 and y2 = ᾱy1. More generally, we have the following
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lemma which is essentially proved in Proposition 4 of [3]. In the following, for
a given positive integer N , we let MN be the set of all N ×N matrices and SN
be the set of all permutations on {1, . . . , N}.

Lemma 2. Let xj , yj ∈ D⊥ for j = 1, . . . , N . Then

N∑
j=1

xj ⊗ yj = 0 on D⊥

if and only if there exist A ∈MN and σ ∈ SN such that

[A− I]

 xσ(1)
...

xσ(N)

 = 0 and A∗

 yσ(1)
...
yσ(N)

 = 0.

Given a point a ∈ D, we let

ϕa(z) =
a− z
1− āz

, z ∈ D

denote the usual automorphism of D and ρa be the function on D defined by

ρa(z) = a− ϕa(z), z ∈ D.

Then, for each a ∈ D, one can check that

ρa ⊗Ka = a(I − TϕaTϕa)(5)

holds on D ; see Lemma 7 of [10].
We are now ready to state and prove our main theorem characterizing zero

sums of products of two dual Toeplitz operators. In the proof, we will use an
argument in [7] where zero sums of products of two ordinary Toeplitz operators
have been characterized. In the following, the notation H denotes the set of
all holomorphic functions on D. Also, given a set X and an integer N ≥ 1,
XN denotes the set of all (x1, x2, . . . , xN ), where xj ∈ X.

Theorem 3. Let uj , vj ∈ L 1,∞ for j = 1, . . . , N . Then

N∑
j=1

SujSvj = 0 on D⊥(6)

if and only
∑N
j=1 ujvj = 0 on D and one of the following equivalent conditions

holds.

(a)
∑N
j=1HujRvj = 0.

(b) There exist A ∈ MN and σ ∈ SN such that the following conditions
hold;

(b1) (A− I)Uσ ∈H N , where Uσ = (uσ(1), . . . , uσ(N))
T .

(b2) Ā∗Vσ ∈ (D⊥)N , where Vσ = (vσ(1), . . . , vσ(N))
T .
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Proof. By (3), we note that

N∑
j=1

SujSvj = S∑N
j=1 ujvj

−
N∑
j=1

HujRvj .(7)

It is known that
∑N
j=1 SujSvj is compact if and only if

∑N
j=1 ujvj = 0; see

Corollary 2.5 of [11]. Note that (6) implies the compactness of
∑N
j=1 SujSvj .

Thus, (7) shows that (6) holds if and only if
∑N
j=1 ujvj = 0 and (a) holds. So,

in order to prove the theorem, it suffices to prove that (a) is equivalent to (b).
Now, suppose (a) holds and fix a nonzero point a in D. Noting

HujTϕa = SϕaHuj , TϕaRvj = RvjSϕa ,

we can see from (5) that

[Hujρa]⊗ [R∗vjKa] = Huj [ρa ⊗Ka]Rvj

= Huj [a(I − TϕaTϕa)]Rvj

= a[HujRvj −HujTϕaTϕaRvj ]

= a[HujRvj − SϕaHujRvjSϕa ]

for each j. Hence we have

N∑
j=1

[Hujρa]⊗ [R∗vjKa] = a

N∑
j=1

HujRvj − aSϕa

 N∑
j=1

HujRvj

Sϕa = 0.

By Lemma 2, there exist A = [aij ] ∈MN and σ ∈ SN such that

[A− I]

 Huσ(1)ρa
...

Huσ(N)
ρa

 = 0 and A∗

 R∗vσ(1)Ka

...
R∗vσ(N)

Ka

 = 0.(8)

By the first equation of (8), one can see that

H∑N
j=1 aijuσ(j)

ρa =

N∑
j=1

aijHuσ(j)ρa = Huσ(i)ρa

and hence

(I − P )

ρa[ N∑
j=1

aijuσ(j) − uσ(i)
] = H∑N

j=1 aijuσ(j)−uσ(i)
ρa = 0

for each i. Hence ρa

[∑N
j=1 aijuσ(j) − uσ(i)

]
∈H for each i. Note ρa(z) = 0 if

and only if z = 0. Since each uj is bounded, we see that
∑N
j=1 aijuσ(j)−uσ(i) ∈
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H for each i and then (b1) holds. Note R∗αϕ = ᾱR∗ϕ for every ϕ ∈ L 1,∞ and
constant α. Thus, by the second equation of (8), one obtains

R∗∑N
i=1 aijvσ(i)

Ka =

N∑
i=1

aijR
∗
vσ(i)

Ka = 0,

which implies that
∑N
i=1 aijvσ(i) ∈ D⊥ for every j by Proposition 1. Hence

(b2) holds and (b) follows as desired.

Now suppose (b) holds. Letting A = [aij ], we have
∑N
j=1 aijuσ(j) − uσ(i) ∈

H and
∑N
j=1 ajivσ(j) ∈ D⊥ for each i. For x ∈ H ∩ L 1,∞, note Hx = 0.

Hence

Huσ(i) = H∑N
j=1 aijuσ(j)

, R∑N
j=1 ajivσ(j)

= 0

for each i. It follows that

N∑
j=1

HujRvj =

N∑
j=1

Huσ(j)Rvσ(j)

=

N∑
j=1

(
H∑N

i=1 ajiuσ(i)

)
Rvσ(j)

=

N∑
j=1

(
N∑
i=1

ajiHuσ(i)

)
Rvσ(j)

=

N∑
i=1

Huσ(i)

 N∑
j=1

ajiRvσ(j)


=

N∑
i=1

Huσ(i)

(
R∑N

j=1 ajivσ(j)

)
= 0

and (a) holds. The proof is complete. �

As immediate consequences, we obtain several applications. First, in the
special case when N = 2 in Theorem 3, we obtain a more concrete description
as shown in the next corollary.

Corollary 4. Let u, v, ϕ, ψ ∈ L 1,∞. Then SuSv = SϕSψ on D⊥ if and only
if uv = ϕψ on D and one of the following statements holds:

(a) u, ϕ ∈H .
(b) v, ψ ∈ D⊥.
(c) u ∈H , ψ ∈ D⊥.
(d) v ∈ D⊥, ϕ ∈H .
(e) u+ βϕ ∈H and ψ + βv ∈ D⊥ for some nonzero constant β ∈ C.
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Proof. First suppose SuSv = SϕSψ. By Theorem 3 (with the identity σ without
loss of generality), we have uv = ϕψ and

(a− 1)u− bϕ ∈H ,

cu− (d− 1)ϕ ∈H ,

cψ + av ∈ D⊥,

dψ + bv ∈ D⊥

(9)

for some constants a, b, c and d. If u ∈ H and b 6= 0, then the first line above
shows ϕ ∈ H and then (a) holds. Also, if u ∈ H , b = 0 and d 6= 0, then the
last line above shows ψ ∈ D⊥ and then (c) holds. If u ∈ H and b = d = 0,
then the second line above shows ϕ ∈H and then (a) holds. Hence, if u ∈H ,
then (a) or (c) holds. Similarly, we can see that if v ∈ D⊥, then (b) or (d)
holds. Also, if ϕ ∈ H , then (a) or (d) holds. Finally, if ψ ∈ D⊥, (b) or (c)
holds. Note S1 = I. By the last case what we have done above, we characterize
the semi-commuting dual Toeplitz operators by taking ψ = 1 ∈ D⊥ together
with (3) as follows: SuSv = Suv if and only if either u ∈ H or v ∈ D⊥. This
fact will be used in the proof of the last case below.

Now, assume u, ϕ /∈ H and v, ψ /∈ D⊥. If a − 1 = b = c = d − 1 = 0,
then the last two conditions above show v, ψ ∈ D⊥, which is impossible and
then one of a− 1, b, c, d− 1 is nonzero. On the other hand, using the first two
conditions in (9), we note a − 1 6= 0 if and only if b 6= 0, and c 6= 0 if and
only if d 6= 1. Thus we have u+ εϕ ∈H for some nonzero constant ε. Also, if
a = b = c = d = 0, then the first two conditions in (9) show u, ϕ ∈ H , which
is impossible as before. So, one of a, b, c, d is nonzero and then by the same
argument above we see ψ + δv ∈ D⊥ for some nonzero constant δ. Now we
show ε = δ. For x ∈ L 1,∞, recall that Rx = 0 if and only if x ∈ D⊥. Also,
note that Hx = 0 for x ∈H ∩L 1,∞. Since u+ εϕ ∈H and ψ+ δv ∈ D⊥, (3)
shows that

Su+εϕSv = Sv(u+εϕ) −Hu+εϕRv = Sv(u+εϕ),

SϕSψ+δv = Sϕ(ψ+δv) −HϕRψ+δv = Sϕ(ψ+δv).
(10)

It follows that

SuSv = Suv + εSϕv − εSϕSv,
SϕSψ = Sϕψ + δSϕv − δSϕSv.

(11)

Since SuSv = SϕSψ and uv = ϕψ, we have (ε− δ)[SϕSv − Sϕv] = 0. But, since
ϕ /∈ H and v /∈ D⊥, we see SϕSv 6= Sϕv by the remark mentioned before.
Thus ε = δ and (e) holds, as desired.

Now, suppose uv = ϕψ and one of (a)∼(e) holds. If either x ∈ H or
y ∈ D⊥, we recall HxRy = 0. Hence, if one of (a), (b), (c) and (d) holds, we
have SuSv = SϕSψ by (3). If (e) holds, (10) and (11) with β = ε = δ show
that SuSv = SϕSψ. The proof is complete. �
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If we take ϕ = v and ψ = u in Corollary 4, we characterize commuting dual
Toeplitz operators as in Corollary 5(a) below which recovers Theorem 2 of [10].
Also, taking ψ = 1 in Corollary 4, we have Corollary 5(b) below solving the
product problem of when a product of two dual Toeplitz operators is another
dual Toeplitz operator. Finally, as mentioned before in the proof of Corollary 4,
taking ϕ = uv in Corollary 5(b), we characterize semi-commuting dual Toeplitz
operators, which recovers Theorem 3 of [10]; see Corollary 5(c) below.

Corollary 5. Let u, v, ϕ ∈ L 1,∞. Then the following statements hold.

(a) SuSv = SvSu if and only if u, v ∈ H or u, v ∈ D⊥ or a nontrivial
linear combination of u and v is constant on D.

(b) Sϕ = SuSv if and only if ϕ = uv on D, and u ∈H or v ∈ D⊥.
(c) Suv = SuSv if and only if either u ∈H or v ∈ D⊥.

Acknowledgements. The author would like to thank the referee for the
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