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MINIMAL POLYNOMIAL DYNAMICS ON

THE p-ADIC INTEGERS

Sangtae Jeong

Abstract. In this paper, we present a method of characterizing minimal

polynomials on the ring Zp of p-adic integers in terms of their coefficients
for an arbitrary prime p. We first revisit and provide alternative proofs of

the known minimality criteria given by Larin [11] for p = 2 and Durand

and Paccaut [6] for p = 3, and then we show that for any prime p ≥ 5,
the proposed method enables us to classify all possible minimal polyno-

mials on Zp in terms of their coefficients, provided that two prescribed
prerequisites for minimality are satisfied.

1. Introduction

Dynamical systems on Zp or its positive characteristic counterparts have
attracted considerable attention for their theoretical value [3, 15, 16] and have
been applied to computer sciences, quantum mechanics, and cryptography [3].
One practical application for them includes the construction of pseudo-random
generators from polynomials with integer coefficients that lead to a large cycle
modulo a given positive integer. Using the Chinese remainder theorem, this
task is reduced to finding minimal polynomials on Zp that induce a full-length
cycle modulo any powers of a prime number, p. As we know, a complete
description of minimal polynomials on Zp in terms of their coefficients seems
to be a much harder task, because the associated permutation polynomials
modulo p are known to be difficult to characterize in terms of their coefficients
[12].

The purpose of the present study is to present a method of characterizing
minimal polynomials on Zp in terms of their coefficients for any prime p > 3.
To this end, we see that such a minimal polynomial satisfies two prerequisites:
the reduced polynomial modulo p is transitive, that is, it induces a full-length
cycle modulo p; and the product of its derivatives at 0, . . . , p−1 is 1 modulo p.
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By the two prescribed conditions, there are exactly (p−1)!(p−1)p−1 choices of
Zp-coefficients modulo p of the polynomial. The proposed method enables us
to classify all possible minimal polynomials on Zp in terms of their coefficients,
provided that all prescribed conditions are completely found. Thus, the general
problem of finding a minimal polynomial on Zp or deciding if a given polynomial
map is minimal can be completely answered. Furthermore, we revisit the known
cases for p = 2, 3 and give a complete description of minimal polynomials on
Zp, which can be compared with the minimality criteria given by Larin [11] for
p = 2 and by Durand and Paccaut [6] for p = 3, respectively.

Regarding refined dynamical properties, Fan and Liao [8] developed a lin-
earization technique derived from the work of DesJardins and Zieve [4, 17] to
obtain the complete minimal decomposition of any polynomial, f ∈ Zp[x], of
degree ≥ 2 for an arbitrary prime p. For a broader class of 1-Lipschitz func-
tions, Anashin [1, 2] provided an ergodicity criterion on Zp in terms of Mahler
coefficients for p = 2 and necessary conditions for p > 2. Recently, the author
of the present paper [10] presented such an ergodicity criterion of a certain
class of 1-Lipschitz functions known as B-functions on Zp for all primes p. The
present work applies the idea and method of [10] to polynomials.

The remainder of this paper is organized as follows. Section 2 provides
a brief discussion of the prerequisites for non-Archimedean dynamics with the
existing dynamical properties of 1-Lipschitz functions on Zp. Section 3 contains
another minimality criterion of polynomials in Theorem 3.1, which states that
a polynomial, f ∈ Zp[x], is minimal if and only if the reduction of f(x) modulo
δp(x), defined in (3.1), is minimal. We characterize minimal polynomials on Zp
in terms of their coefficients for p = 2 in Section 4 and for p = 3 in Section 5.
Finally, Section 6 is devoted to presenting a method of characterizing minimal
polynomials on Zp for any prime p ≥ 5, in terms of their coefficients according
to the degrees of the polynomials.

2. Basics of non-Archimedean dynamics on Zp

Let Zp be the ring of p-adic integers for a prime number p; let Qp be the
ring of p-adic numbers; and let | · | be the (normalized) absolute value on Qp

associated with the additive valuation, ordp on Qp, such that |x| = p−ordp(x).
We next define 1-Lipschitz functions on Zp.

Definition. A function f : Zp → Zp is said to be 1-Lipschitz if, for all x, y ∈
Zp, we have

|f(x)− f(y)| ≤ |x− y|.

Typical examples of 1-Lipschitz functions on Zp include polynomials having
coefficients in Zp and a class of B-functions in [2].

It should be noted that a 1-Lipschitz function f has some equivalent state-
ments.

(L1) f(x) ≡ f(y) (mod pn) whenever x ≡ y (mod pn) for any integer n ≥ 1.
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(L2) f(x+ pnZp) ⊂ f(x) + pnZp for all x ∈ Zp and any integer n ≥ 1.
(L3) |f(x+ y)− f(x)| ≤ |y| for all x, y ∈ Zp.

It should be noted that (L1) implies that a 1-Lipschitz function f : Zp → Zp
induces a sequence of reduced functions, f/n (n ≥ 1), on quotient rings defined
by

f/n : Zp/p
nZp → Zp/p

nZp, x+ pnZp 7→ f(x) + pnZp.

Let us briefly recall some elements of non-Archimedean dynamics on Zp.
A p-adic dynamical system on Zp is understood as a triple (Zp, f, µp), where
f : Zp → Zp is a measurable function, and µp is the Haar measure on Zp,
which is normalized such that µp(Zp) = 1. Elementary µp-measurable sets are
the p-adic balls of radius p−k. These are the sets of the form, a + pkZp, for
a ∈ Zp and an integer k ≥ 0. The measure of such a ball is defined as its radius
(i.e., µp(a+ pkZp) = 1/pk).

Definition. Let (Zp, f, µp) be a p-adic dynamical system on Zp. A function
f : Zp → Zp is said to be measure-preserving if µp(f

−1(M)) = µp(M) for each
measurable subset M ⊂ Zp. A measure-preserving function f : Zp → Zp is said
to be ergodic if it has no proper invariant subsets (i.e., either µp(M) = 1 or
µp(M) = 0 holds for any measurable subset, M ⊂ Zp, such that f−1(M) = M).

Definition. A continuous function f : Zp → Zp is said to be minimal if the
forward orbit of f at x is dense in Zp for every x ∈ Zp.

Let S be a finite set of N ≥ 1 elements and f be a map from S to itself.
Moreover, let fn denote the n-th iteration of f , with the convention that f0 is
the identity map on S.

Definition. A function f : S → S is transitive or minimal on S if S forms
a single cycle of f ; that is, {x0, f(x0), . . . , fN−1(x0)} = S for any fixed initial
point, x0 ∈ S.

A 1-Lipschitz function on Zp has some equivalent statements for measure-
preservation.

Proposition 2.1. Let f : Zp → Zp be a 1-Lipschitz function. The following
are thus equivalent:

(1) f is onto;
(2) f is an isometry (i.e., |f(x)− f(y)| = |x− y| for all x, y ∈ Zp);
(3) f/n is bijective for all integers n ≥ 1;
(4) f is measure-preserving.

Proof. See [6, Proposition 4]. �

A simpler measure-preservation criterion for polynomials in Zp[x] is known.

Proposition 2.2. For f ∈ Zp[x], the following are equivalent:

(1) f/n is bijective for all integers, n ≥ 1;
(2) f/2 is bijective;
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(3) f/1 is bijective, and f ′(x) ≡ 0 (mod p) has no solutions in Zp.

Proof. See [14] or [4]. �

Regarding ergodicity or minimality, we have the following equivalent state-
ments.

Proposition 2.3. Let f : Zp → Zp be a measure-preserving 1-Lipschitz func-
tion. Then, the following are equivalent:

(1) f is minimal;
(2) f is uniquely ergodic (i.e., there is only one ergodic measure);
(3) f/n is transitive on Zp/p

nZp for all integers, n ≥ 1;
(4) f is conjugate to the translation t(x) = x+ 1 on Zp, which means that

there exists a homeomorphism φ on Zp such that φ ◦ f = t ◦ φ;
(5) f is ergodic.

Proof. See [6, Theorem 6]. �

An efficient minimality criterion for polynomials in Zp[x] is known.

Proposition 2.4. Let f : Zp → Zp be a polynomial in Zp[x] such that(
Zp/p

nZp, f/n
)

is minimal for n ≥ 1. Then, the following are equivalent:

(1)
(
Zp/p

n+1Zp, f/n+1

)
is minimal;

(2) For all x ∈ Zp, we have fp
n

(x)−x 6∈ pn+1Zp and
(
fp

n)′
(x) ∈ 1+pZp;

(3) There exists x ∈ Zp, such that fp
n

(x)− x 6∈ pn+1Zp, and
(
fp

n)′
(x) ∈

1 + pZp.

Proof. See [6, Lemma 8]. �

Proposition 2.5. A polynomial, f ∈ Zp[x], is minimal if and only if(
Zp/p

µZp, f/µ
)

is minimal, where µ = 3 if p is 2 or 3 and µ = 2 if p ≥ 5.

Proof. See [6, Proposition 9]. �

3. Another minimality criterion for polynomials on Zp

For a prime p, we set

µ := µ(p) =

{
3 if p ∈ {2, 3};
2 if p ≥ 5,

and let δ = δp be the integer-valued binomial coefficient polynomial on Zp
defined by

(3.1) δ(x) := δp(x) =

{ (
x
p2

)
if p ∈ {2, 3};(

x
2p

)
if p ≥ 5.

Here, we give another minimality criterion of a polynomial f(x) ∈ Zp[x]
in terms of its reduction by δ. Thus, the minimality of polynomials of any
degree can be reduced to that of polynomials having coefficients in the residue
class ring Z/pµZ, of deg(δ) − 1 degree at most. In the following, we denote
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by R(pµ) the set of all non-equivalent minimal polynomials of degree < deg(δ)
with coefficients in Z/pµZ. It is understood that any element in R(pµ) can (and
will) be a polynomial having integer coefficients in Z/pµZ := {0, . . . , pµ − 1}.

Here, we state Theorem 3.1 as the main result of this section. Part (1) of
Theorem 3.1 is efficient for determining if a given polynomial f(x) ∈ Zp[x]
is minimal, and its proof is provided below. Moreover, part (2) is already
known in the literature. Indeed, Larin [11] used the group theory related to
permutations to show part (2) of Theorem 3.1, and Jeong [10] also deduced the
same result from an ergodicity criterion of B-functions on Zp. In later sections,
we shall prove this again using the minimality criterion of polynomials on Zp.

Theorem 3.1. Let f ∈ Zp[x] be a polynomial of a positive degree.

(1) f is minimal if and only if the reduction of f(x) modulo δ(x) is minimal
in R(pµ).

(2) The number of elements in R(pµ) is determined as follows:

#R(pµ) =

 16 if p = 2;
25310 if p = 3;
(p− 1)!(p− 1)ppp−1 if p ≥ 5.

Proof. We prove part (1) only because the rest will be treated in later sections
depending on p. Let r(x) be the remainder of f by division with δ. Then,

f(x) = q(x)δ(x) + r(x),

where q, r ∈ Zp[x], and r(x) is of degree < deg(δ). By Proposition 2.5, the
result follows from the claim that the congruence

f(x) ≡ r(x) (mod pµ)

holds. We will show that all coefficients of q(x) are divisible by pµ, thereby
implying the claimed result.

By the Newton interpolation formula or by Mahler’s result in [13], any poly-
nomial, f ∈ Zp[x], is uniquely represented as a finite sum of the form in terms
of binomial coefficient polynomials:

(3.2)

f(x) =

d∑
n=0

an

(
x

n

)

=

deg(δ)−1∑
n=0

an

(
x

n

)
+

d∑
n=deg(δ)

an

(
x

n

)
,

where all an belong to Zp, and d is assumed to be greater than or equal to
deg(δ). Because any polynomial in Zp[x] is an analytic function, from [3,
Proposition 3.58], all an/n! lie in the p-adic integers. Thus, it is checked that,
for any n ≥ deg(δ), an

(
x
n

)
= g(x)δ(x) with g(x) ∈ Zp[x], all coefficients are

divisible by pµ. Indeed, we do this in a unified way for all primes p. For
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n ≥ deg(δ), we have

an

(
x

n

)
= deg(δ)!

an
n!

(x− deg(δ)) · · · (x− n+ 1)δ(x).

Because deg(δ)! is divisible by pµ, by factoring-out a common factor δ from
all terms in the second sum of the right-hand side of (3.2), the second sum in
(3.2) is reduced to the product of the form, q(x)δ(x), with all coefficients of
q(x) ∈ Zp[x] divisible by pµ, and the first sum in (3.2) is the remainder r(x) of
f on division by δ. Thus, the proof is complete. �

We say that a polynomial, f ∈ Zp[x], is vanishing modulo m for a positive
integer m if f(α) ≡ 0 (mod m) for any α ∈ Zp. By observing from the proof of
Theorem 3.1 that the polynomial q is vanishing modulo pµ, we derive a known
decomposition for minimal polynomials, which was first observed by Larin in
[11, Proposition 19].

Corollary 3.2. A polynomial f ∈ Zp[x] is minimal if and only if f(x) is
representable in the form

f(x) = r(x) + t(x),

where r(x) belongs to R(pµ) and t(x) is vanishing modulo pµ.

4. Characterization for p = 2

For p = 2, the minimality criterion of a polynomial in Zp[x] is well known in
terms of its coefficients. Larin [11] and Durand and Paccaut [6] independently
gave a minimal criterion of a general polynomial in Z2[x] in terms of its coeffi-
cients. Herein, we give an alternative proof of their results. For this, we recall
the minimal conditions for a polynomial of degree three at most.

Lemma 4.1. A polynomial, f(x) = a0 +a1x+a2x
2 +a3x

3 ∈ Z2[x], is minimal
if and only if the system of the following relations is fulfilled:

a0 ≡ 1 (mod 2);

a2 ≡ 0 (mod 2);

a3 ≡ 0 (mod 4);

a1 + a2 ≡ 1 (mod 4).

Proof. See [11, Proposition 20] for an original proof. For completeness, we
follow the strategy in [6] to give an alternative proof. It was shown in [6,
Lemmas 12 and 13, Theorem 14] that f is minimal if and only if the following
conditions are satisfied:

(M1) f(0) ≡ 1 (mod 2) and f(1) ≡ 0 (mod 2);
(M2) (f2)′(0) ≡ 1 (mod 2);
(M3) (f2)(0) ∈ 2Z2 \ 4Z2;
(M4) (f4)(0) ∈ 4Z2 \ 8Z2.
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Through simple computations, it is easy to see that (M1) and (M2) are equiv-
alent to the following relations:

a0 ≡ 1 (mod 2); a1 ≡ 1 (mod 2); a2 ≡ 0 (mod 2); a3 ≡ 0 (mod 2).

Secondly, because f2(0) ≡ 1 + a1 + a2 + a3 (mod 4), (M3) is equivalent to
a1 + a2 + a3 ≡ 1 (mod 4). Finally, from the proof of [6, Thereom 14], (M4) is
equivalent to

(f2)′(0) + (f2)′′(0) ≡ 1 (mod 4),

which is also equivalent to 2a2 + a1(a1 + a3) ≡ 1 (mod 4). Through direct
computations with the above relations, it is equivalent to a3 ≡ 0 (mod 4).
Putting all the relations together gives the desired end-result. �

We now conclude the proof of part (2) of Theorem 3.1 for the case p = 2 by
showing #R(pµ) = 16 in the following:

Lemma 4.2. A polynomial, f(x) = a0 +a1x+a2x
2 +a3x

3 ∈ Z2[x], is minimal
if and only if the map, x 7→ f(x) (mod 8), x ∈ {0, 1, . . . , 7} coincides with a
map induced by any of the following 16 polynomials on the ring Z/8Z:

x+ 1 5x+ 1 2x2 + 3x+ 1 2x2 + 7x+ 1
x+ 3 5x+ 3 2x2 + 3x+ 3 2x2 + 7x+ 3
x+ 5 5x+ 5 2x2 + 3x+ 5 2x2 + 7x+ 5
x+ 7 5x+ 7 2x2 + 3x+ 7 2x2 + 7x+ 7

Proof. We use Lemma 4.1 to list all distinct minimal polynomials in R(pµ).
According to Lemma 4.1, it suffices to deal with a minimal polynomial f(x) =
a0 + a1x+ a2x

2, of degree < 3, with ai ∈ Z/8Z, because a minimal polynomial
f(x) of degree three is reduced to a polynomial of lower degree due to the
simple observation that 4x3 ≡ 4x (mod 8). Next, we set a0 = 1 + 2z0, a1 =
1 + 2z1, a2 = 2z2 with zi ∈ Z/4Z. Thus, we have a minimal polynomial,
f(x) = 1 + x + 2(z0 + z1x + z2x

2), with a condition, z1 + z2 ≡ 0 (mod 2). If
we put the set S = {(z0, z1, z2) ∈ (Z/4Z)3 | z1 + z2 ≡ 0 (mod 2)}, S has 32
elements whose each element leads to a minimal polynomial. Some of them will
be equivalent modulo 8. Thus, let us find non-equivalent minimal polynomials
by counting elements of S that induce such polynomials. To this end, the set
S is divided into two disjoint subsets as follows:

S = S0 ∪ S2,

where for i ∈ {0, 2}, Si := {(z0, z1, z2) ∈ S | z1 + z2 ≡ i (mod 4)}.
Suppose that two elements, (z0, z1, z2) and (z′0, z

′
1, z
′
2), in S0 lead to an equiv-

alent minimal polynomial modulo 8. From the representation of f , we then
derive the following relation:

z0 + z1x+ z2x
2 ≡ z′0 + z′1x+ z′2x

2 (mod 4),

which is easily equivalent to the following relations:

z0 = z′0; z1 ≡ z′1 (mod 2); z2 ≡ z′2 (mod 2).
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Thus, there are exactly eight non-equivalent minimal polynomials in S0 that
violate these relations. Indeed, they constitute the first and fourth columns of
the matrix array in the statement. By the same argument for S2, we obtain
eight more non-equivalent minimal polynomials that constitute the second and
third columns of the matrix array. Thus, combining the two cases gives the
result. �

We revisit the minimality criterion of Durand and Paccaut to remove the
assumption that the polynomial has a constant term, 1. To this end, for f(x) =
a0 + a1x+ · · ·+ adx

d, a polynomial of degree d ≥ 1 in Z2[x], we set

A0 =
∑

0<i≡0 (mod 2)

ai; A1 =
∑

i≡1 (mod 2)

ai.

Theorem 4.3. A polynomial, f(x) = a0 +a1x+ · · ·+adx
d ∈ Z2[x], is minimal

if and only if the system of the following relations is fulfilled:

a0 ≡ 1 (mod 2);

a1 ≡ 1 (mod 2);

A1 ≡ 1 (mod 2);

A0 +A1 ≡ 1 (mod 4);

2a2 + a1A1 ≡ 1 (mod 4).

Proof. The proof is identical with that of [6, Theorem 14], except for the as-
sumption that a0 = f(0) = 1. Because the rest of the conditions is the same,
we point out that the fourth condition involving a0 is also unchanged without
the restriction on a0 by computing f2(0) modulo 4 as follows. Using the Taylor
theorem, we get

f2(0) = f(a0) = f(1 + 2z0) ≡ f(1) + 2z0f
′(1) ≡ 2a0 − 1 +A0 +A1 (mod 4),

because f ′(1) ≡ A1 ≡ 1 (mod 2). Thus, by (M3), it is easily seen that f2(0) ≡
2 (mod 4) is equivalent to A0 +A1 ≡ 1 (mod 4) as a0 ≡ 1 (mod 2). �

For completeness, we state Larin’s result that follows from Lemma 4.1
through a simple reduction procedure.

Corollary 4.4. A polynomial, f(x) = a0+a1x+· · ·+adxd ∈ Z2[x], is minimal
if and only if the system of the following relations is fulfilled:

a0 ≡ 1 (mod 2);

a1 ≡ 1 (mod 2);

A1 − a1 ≡ 2a2 (mod 4);

A0 ≡ a1 + 2a2 − 1 (mod 4).

Proof. The relations in Theorem 4.3 are shown to be equivalent to those in the
statement. See [11, Proposition 21] for an original proof. �
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5. Characterization for p = 3

We now turn to the case, p = 3. For this case, Durand and Paccaut in [6]
provided a complete minimality criterion of a polynomial, f ∈ Z3[x], in terms
of its coefficients under the assumption that f(0) = 1. Their characterization
was mainly based on the following:

Proposition 5.1. Let f ∈ Z3[x] be a polynomial of a positive degree. Then, f
is minimal if and only if the following conditions are satisfied:

(M1) f/1 is transitive (i.e., f is transitive modulo 3);

(M2) (f3)′(0) ≡ 1 (mod 3) (i.e., (f)′(f2(0))f ′(f(0))f ′(0) ≡ 1 (mod 3));
(M3) f3(0) ∈ 3Z3 \ 9Z3; and
(M4) 3(f3)′′(0)− 2f3(0) 6≡ 0 (mod 9).

Proof. See [6, Lemma 17 and Theorem 18] for an original proof. �

General polynomials use a conjugacy homeomorphism to provide a minimal-
ity criterion of a polynomial that involves higher powers of its constant term.
Herein, we revisit the criterion of Durand and Paccaut from different perspec-
tives and provide a complete minimality criterion of a polynomial, f ∈ Z3[x],
in terms of its coefficients, without any restriction on the constant term. To
state it properly, we set the following constants associated with the coefficients
of a polynomial, f(x) = a0 + a1x+ · · ·+ adx

d ∈ Z3[x], of degree d ≥ 1:

a0 = a0;
∑

i∈1+2Z

ai = A1;
∑

0<i∈2Z

ai = A0;

a1 = D0;

d∑
i=1

iai = D1;

d∑
i=1

iai2
i−1 = D2.

(5.1)

We are now in a position to prove Theorem 5.2 using Proposition 5.1.

Theorem 5.2. A polynomial, f(x) = a0 + a1x+ · · ·+ adx
d ∈ Z3[x] of degree

d ≥ 1, is minimal if and only if f satisfies one of the conditions, (i)–(viii):
Setting [a0, A1, A0, D0, D1, D2] mod 3 =[·, ·, . . . , ·],

(i) [1, 1, 0, 1, 1, 1], A0 + 6 6≡ 0 [9], A0 + 6 6≡ 6a2 + 3
∑
j≥0 a6j+2 [9];

(ii) [1, 1, 0, 1, 2, 2], A1+a0+4 6≡ 0 [9], A1+a0+4 6≡ 3a2+3
∑
j≥0 a6j+5 [9];

(iii) [1, 1, 0, 2, 1, 2], A1+2a0+3 6≡ 0 [9], A1+2a0+3 6≡ 6a2+3
∑
j≥0 a6j+5 [9];

(iv) [1, 1, 0, 2, 2, 1], A0+2a0+4 6≡ 0 [9], A0+2a0+4 6≡ 3a2+3
∑
j≥0 a6j+2 [9];

(v) [2, 1, 0, 1, 1, 1], A0 + 3 6≡ 0 [9], A0 + 3 6≡ 6a2 + 3
∑
j≥0 a6j+2 [9];

(vi) [2, 1, 0, 1, 2, 2], A1+2a0+7 6≡ 0 [9], A1+2a0+7 6≡ 6a2+3
∑
j≥0 a6j+5 [9];

(vii) [2, 1, 0, 2, 1, 2], A0+2a0+5 6≡ 0 [9], A0+2a0+5 6≡ 3a2+3
∑
j≥0 a6j+2 [9];

(viii) [2, 1, 0, 2, 2, 1], A1+a0+6 6≡ 0 [9], A1+a0+6 6≡ 3a2+3
∑
j≥0 a6j+5 [9].

Proof. The key idea for this proof requires viewing the equations in (5.1) as
the linear system modulo 3 in variables a0 · · · ad for a given constant column
vector, [a0, A1, A0, D0, D1, D2]t mod 3, where t indicates the transpose of a
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matrix. We then find the necessary and sufficient conditions for minimality of
a polynomial, f , having the prescribed vectors, [a0, A1, A0, D0, D1, D2] mod 3.

To ensure that both (M1) and (M2) are satisfied, we list the set of all possible
eight row vectors, [a0, A1, A0, D0, D1, D2] mod 3, that constitute

Type I : [1, 1, 0, 1, 1, 1], [1, 1, 0, 1, 2, 2], [1, 1, 0, 2, 1, 2], [1, 1, 0, 2, 2, 1];

Type II : [2, 1, 0, 1, 1, 1], [2, 1, 0, 1, 2, 2], [2, 1, 0, 2, 1, 2], [2, 1, 0, 2, 2, 1].

It is observed that the transitivity of f modulo 3 induces Types I and II, with
the former being f(0) ≡ 1 (mod 3) and the latter being f(0) ≡ 2 (mod 3).
For each type, there are exactly four cases for [D0, D1, D2] mod 3 satisfying
D0D1D2 ≡ 1 (mod 3) in (M2). Altogether, there are eight choices for constant
vectors, [a0, A1, A0, D0, D1, D2] mod 3. For simplicity, we may assume that the
degree of f is less than or equal to 6k, if necessary, by setting the coefficients of
higher degrees to be 0. Hence, the augmented coefficient matrix of the above
linear systems modulo 3 is given by a matrix of the form [A|B] = [R|S|B] :

1 0 0 0 0 0 0 0 0 0 0 0 · · · · · 1 1 1 1 2 2 2 2
0 1 0 1 0 1 0 1 0 1 0 1 · · · · · 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0 1 0 1 0 · · · · · 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 · · · · · 1 1 2 2 1 1 2 2
0 1 2 0 1 2 0 1 2 0 1 2 · · · · · 1 2 1 2 1 2 1 2
0 1 1 0 2 2 0 1 1 0 2 2 · · · · · 1 2 2 1 1 2 2 1


The coefficient matrix A of size 6 × (6k + 1) comes from the linear system in
(5.1) and is divided into two submatrices R and S, where R is a 6× 6 matrix,
which is row reduced to the identity matrix I6 in (5.2). The matrix S of size
6 × 6(k − 1) + 1 is of the form S = [M | · · · |M |C1], where M is the submatrix
that consists of the first six column vectors of S and repeats k − 1 times in S,
and C1 is the first column of M . The reason that the matrix S has this type of
pattern is that the entries of the second and third rows of S have a period of
length 2 and those of the fifth and sixth rows have a period of length 3. This
pattern of the matrix S is also the reason why the degree d of f is taken as
d = 6k. Furthermore, the constant 6 × 8 matrix B is formed by transposing
the eight row vectors, [a0, A1, A0, D0, D1, D2] mod 3, that appear in the orders
of Type I/II. Thus, by applying row operations to the augmented coefficient
matrix, we can determine all solutions, [a0, . . . , ad] mod 3, to the linear systems
simultaneously for all eight constant vectors, [a0, A1, A0, D0, D1, D2] mod 3.

The reduced row echelon form of the augmented coefficient matrix of the
above linear systems is simultaneously given by a matrix of the form [A′|B′] =
[R′|S′|B′] :

(5.2)


1 0 0 0 0 0 0 0 0 0 0 0 · · · · · 1 1 1 1 2 2 2 2
0 1 0 0 0 0 0 0 0 0 0 0 · · · · · 1 1 2 2 1 1 2 2
0 0 1 0 0 0 2 0 1 0 0 0 · · · · · 0 0 1 2 0 0 1 2
0 0 0 1 0 0 0 2 0 1 0 0 · · · · · 0 1 0 0 0 1 0 0
0 0 0 0 1 0 2 0 0 0 1 0 · · · · · 0 0 2 1 0 0 2 1
0 0 0 0 0 1 0 2 0 0 0 1 · · · · · 0 2 2 2 0 2 2 2

.
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It is observed here that the matrix R′ in the reduced form (5.2) is the identity
matrix of size 6, and owing to the pattern of S, the matrix S′ is of the form
S′ = [M ′| · · · |M ′|C ′1], where M ′ is a submatrix formed by the first 6 column
vectors of S′ and M ′ appears k − 1 times in S′, and C ′1 is the first column of
M ′, that is, the 7th column of the matrix A′. Further, the 6 × 8 matrix B′ is
formed from the matrix B via row operations.

Using the reduced row echelon in (5.2), the parametric representations for
solutions to the chosen linear system are given by the following relations:

(5.3)

a0 = r0 + 3z0;

a1 = r1 + 3z1;

a2 = r2 + 3z2 + (a6 + a12 + · · ·+ a6k) + 2(a8 + a14 + · · ·+ a6k−4);

a3 = r3 + 3z3 + (a7 + a13 + · · ·+ a6k−5) + 2(a9 + a15 + · · ·+ a6k−3);

a4 = r4 + 3z4 + (a6 + a12 + · · ·+ a6k) + 2(a10 + a16 + · · ·+ a6k−2);

a5 = r5 + 3z5 + (a7 + a13 + · · ·+ a6k−5) + 2(a11 + a17 + · · ·+ a6k−1),

where [r0, . . . , r5]t is one of the eight constant column vectors of the matrix B′ in
(5.2), and {zi}0≤i≤5 belong to Z3. From the entries of each column [r0, . . . , r5]t

of B′, we form a polynomial, r(x) =
∑5
i=0 rix

i, and all such polynomials are
listed in the column order of the matrix B′:

P8 := {1 + x, 1 + x+ x3 + 2x5, 1 + 2x+ x2 + 2x4 + 2x5,

1 + 2x+ 2x2 + x4 + 2x5, 2 + x, 2 + x+ x3 + 2x5,

2 + 2x+ x2 + 2x4 + 2x5, 2 + 2x+ 2x2 + x4 + 2x5}.

Substituting these relations (5.3) into f(x) yields

(5.4) f(x) = r(x) +H(x),

where r belongs to P8 and

(5.5) H(x) = 3

5∑
i=0

zix
i +

6k∑
j=6

ajhj(x),

where, for 6 ≤ j = 6i+ l ≤ 6k with 1 ≤ i ≤ k and 0 ≤ l ≤ 5,

h6i(x) = x2 + x4 + x6i, h6i+1(x) = x3 + x5 + x6i+1, h6i+2(x) = 2x2 + x6i+2,

h6i+3(x) = 2x3 + x6i+3, h6i+4(x) = 2x4 + x6i+4, h6i+5(x) = 2x5 + x6i+5.

Note that the polynomials, hj , are vanishing modulo 3, and it is easy to
compute hj(2) modulo 9 as 26 ≡ 1 (mod 9). Thus, the following crucial prop-
erties of H in (5.5) are easily checked and will be heavily and implicitly used
in later computations:
• H(x) and H ′(x) are vanishing modulo 3;
• H(x+ t(x)) ≡ H(x) (mod 9) if t(x) is vanishing modulo 3.
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The values of H(i) modulo 9 are obtained for each i = 0, 1, 2 as follows:

(5.6)

H(0) = 3z0;

H(1) ≡ 3(z0 + z1 + z2 + z3 + z4 + z5)

+ 3E0 + 3E1 + 3E2 + 3E3 + 3E4 + 3E5 (mod 9);

H(2) ≡ 3(z0 + 2z1 + z2 + 2z3 + z4 + 2z5)

+ 3E0 + 6E1 + 3E2 + 6E3 + 3E4 + 6E5 (mod 9),

where for 0 ≤ l ≤ 5, El =
∑
i≥6,i≡l (mod 6) ai.

It is useful to compute

H(0) +H(1) +H(2) ≡ 6(z2 + z4) + 6E0 + 6E2 + 6E4 (mod 9).

For (M3), we now compute f3(0) modulo 9 in terms of the coefficients, ai.
The Taylor theorem for a polynomial in (5.4) yields

(5.7)
f2(x) ≡ f(r(x) +H(x)) ≡ f(r(x)) +H(x)r′(r(x)) (mod 9)

≡ r2(x) +H(r(x)) +H(x)r′(r(x)) (mod 9).

Similarly, computing f3(x) once more yields

f3(x) ≡ r3(x)+H(r2(x))+H(r(x))r′(r2(x))+H(x)r′(r(x))r′(r2(x)) (mod 9).

Therefore,

(5.8)
f3(0) ≡ r3(0) + r′(r2(0))r′(r(0))H(0)

+ r′(r2(0))H(r(0)) +H(r2(0)) (mod 9).

Computing r(0) modulo 9 for each r ∈ P8 gives

(5.9) f3(0) ≡



3 +H(0) +H(1) +H(2) (mod 9) if Case 1;
H(0) + 2H(1) +H(2) (mod 9) if Case 2;
2H(0) + 2H(1) +H(2) (mod 9) if Case 3;
2H(0) +H(1) +H(2) (mod 9) if Case 4;
6 +H(0) +H(1) +H(2) (mod 9) if Case 5;
3 +H(0) +H(1) + 2H(2) (mod 9) if Case 6;
6 + 2H(0) +H(1) +H(2) (mod 9) if Case 7;
6 + 2H(0) +H(1) + 2H(2) (mod 9) if Case 8.

Using the values in (5.6), the expressions in (5.9) can be rewritten in terms of
ai’s:

(5.10) f3(0) ≡



2(A0 + 6) (mod 9) if Case 1;
A1 + a0 + 4 (mod 9) if Case 2;
A1 + 2a0 + 3 (mod 9) if Case 3;
2(A0 + 5a0 + 1) (mod 9) if Case 4;
2(A0 + 3) (mod 9) if Case 5;
2(A1 + 5a0 + 1) (mod 9) if Case 6;
2(A0 + 5a0 + 8) (mod 9) if Case 7;
2(A1 + a0 + 6) (mod 9) if Case 8.
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We now turn to (M4) by computing the value (f3)′′(0) (mod 3) as follows:

(f3)′′(0) = f ′(f2(0))f ′(f(0))f ′′(0) + f ′(f2(0))f ′(0)2f ′′(f(0))

+ f ′(f(0))2f ′(0)2f ′′(f2(0))

≡ f ′(f2(0))f ′(f(0))f ′′(0) + f ′(f2(0))f ′′(f(0))(5.11)

+ f ′′(f2(0)) (mod 3),

because λ2 ≡ 1 (mod 3) for any λ 6≡ 0 (mod 3).
Because f(x) ≡ r(x) (mod 3) and f ′(x) ≡ r′(x) (mod 3), from (5.11), we

have

(5.12)
(f3)′′(0) ≡ r′(r2(0))r′(r(0))f ′′(0) + r′(r2(0))f ′′(r(0))

+ f ′′(r2(0)) (mod 3).

Note that there is a perfect coincidence between r′-related coefficients in (5.8)
and (5.12). Using the formula in (5.12), we obtain

(5.13) (f3)′′(0) ≡



f ′′(0) + f ′′(1) + f ′′(2) (mod 3) if Case 1;
f ′′(0) + 2f ′′(1) + f ′′(2) (mod 3) if Case 2;
2f ′′(0) + 2f ′′(1) + f ′′(2) (mod 3) if Case 3;
2f ′′(0) + f ′′(1) + f ′′(2) (mod 3) if Case 4;
f ′′(0) + f ′′(1) + f ′′(2) (mod 3) if Case 5;
f ′′(0) + f ′′(1) + 2f ′′(2) (mod 3) if Case 6;
2f ′′(0) + f ′′(1) + f ′′(2) (mod 3) if Case 7;
2f ′′(0) + f ′′(1) + 2f ′′(2) (mod 3) if Case 8.

A direct computation yields

f ′′(0) = 2a2; f ′′(1) ≡ −
∑
j≥0

a3j+2 (mod 3); f ′′(2) ≡ −
∑
j≥0

(−1)ja3j+2 (mod 3).

Applying these identities to (5.13) yields

(5.14) (f3)′′(0) ≡



2a2 +
∑
j≥0 a6j+2 (mod 3) if Case 1;

2a2 + 2
∑
j≥0 a6j+5 (mod 3) if Case 2;

a2 + 2
∑
j≥0 a6j+5 (mod 3) if Case 3;

a2 +
∑
j≥0 a6j+2 (mod 3) if Case 4;

2a2 +
∑
j≥0 a6j+2 (mod 3) if Case 5;

2a2 +
∑
j≥0 a6j+5 (mod 3) if Case 6;

a2 +
∑
j≥0 a6j+2 (mod 3) if Case 7;

a2 +
∑
j≥0 a6j+5 (mod 3) if Case 8.

Hence, the equivalent condition of (M3) is given by (5.10) for each case, as
shown in the statement of Theorem 5.2. Regarding (M4), computing 2f3(0) 6≡
3(f3)′′(0) (mod 9) from (5.10) and (5.14) yields the equivalent condition for
each case, as shown in the statement of Theorem 5.2. �
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Focusing on a0 = 1 from Theorem 5.2 yields the result of Durand and
Paccaut [6].

Corollary 5.3. A polynomial, f(x) = 1 + a1x + · · · + adx
d ∈ Z3[x] of degree

d ≥ 1, is minimal if and only if f fulfills one of the conditions (i)–(iv):
Setting [a0, A1, A0, D0, D1, D2] mod3 = [·, ·, . . . , ·],

(i) [1, 1, 0, 1, 1, 1], A0 + 6 6≡ 0 [9], A0 + 6 6≡ 6a2 + 3
∑
j≥0 a6j+2 [9];

(ii) [1, 1, 0, 1, 2, 2], A1 + 5 6≡ 0 [9], A1 + 5 6≡ 3a2 + 3
∑
j≥0 a6j+5 [9];

(iii) [1, 1, 0, 2, 1, 2], A1 + 5 6≡ 0 [9], A1 + 5 6≡ 6a2 + 3
∑
j≥0 a6j+5 [9];

(iv) [1, 1, 0, 2, 2, 1], A0 + 6 6≡ 0 [9], A0 + 6 6≡ 3a2 + 3
∑
j≥0 a6j+2 [9].

In light of Theorem 3.1, it is of interest to deduce a complete minimal crite-
rion of a polynomial of degree 8 at most from Theorem 5.2.

Corollary 5.4. A polynomial, f(x) = a0+a1x+ · · ·+a8x8 ∈ Z3[x], is minimal
if and only if f fulfills one of the conditions, (i)–(viii):

Setting [a0, A1, A0, D0, D1, D2] mod3 = [·, ·, . . . , ·]),
(i) [1, 1, 0, 1, 1, 1], a2+a4+a6+a8+6 6≡ 0 [9], a2+a4+a6+7a8+6 6≡ 0 [9];
(ii) [1, 1, 0, 1, 2, 2], a0 + a1 + a3 + a5 + a7 + 4 6≡ 0 [9], a0 + a1 + 6a2 + a3 +

7a5 + a7 + 4 6≡ 0 [9];
(iii) [1, 1, 0, 2, 1, 2], 2a0 +a1 +a3 +a5 +a7 + 3 6≡ 0 [9], 2a0 +a1 + 3a2 +a3 +

7a5 + a7 + 3 6≡ 0 [9];
(iv) [1, 1, 0, 2, 2, 1], 2a0 + a2 + a4 + a6 + a8 + 4 6≡ 0 [9], 2a0 + 4a2 + a4 +

a6 + 7a8 + 4 6≡ 0 [9];
(v) [2, 1, 0, 1, 1, 1], a2+a4+a6+a8+3 6≡ 0 [9], a2+a4+a6+7a8+3 6≡ 0 [9];

(vi) [2, 1, 0, 1, 2, 2], 2a0 + a1 + a3 + a5 + a7 + 7 6≡ 0 [9], 2a0 + a1 + 3a2 +
a3 + 7a5 + a7 + 7 6≡ 0 [9];

(vii) [2, 1, 0, 2, 1, 2], 2a0 + a2 + a4 + a6 + a8 + 5 6≡ 0 [9], 2a0 + 4a2 + a4 +
a6 + 7a8 + 5 6≡ 0 [9];

(viii) [2, 1, 0, 2, 2, 1], a0 + a1 + a3 + a5 + a7 + 6 6≡ 0 [9], a0 + a1 + 6a2 + a3 +
7a5 + a7 + 6 6≡ 0 [9].

Proof. It is immediate from Theorem 5.2. �

The following lemma remains to be proven to complete the proof of part (2)
of Theorem 3.1 for the case, p = 3.

Lemma 5.5. #R(33) = 25 · 310.
Proof. We use Corollary 5.4 to assert that the number of all possible non-
equivalent minimal polynomials modulo 33 is 4 · 310 for each of the eight cases.
We do this for case 1, only because the rest can be done in a similar way. Let
f(x) = a0 + a1x+ · · ·+ a8x

8 ∈ Z/27Z[x] be a minimal polynomial of degree 8
at most in Case (i) of Corollary 5.4. From (5.3), the parametric representation
of f is given by the following relations:

(5.15)
a0 =1 + 3z0, a1 =1 + 3z1, a2 =a6 + 2a8 + 3z2, a3 =a7 + 3z3;

a4 =a6 + 3z4, a5 =a7 + 3z5, a6 =e6 + 3z6, a7 =e7 + 3z7, a8 =e8 + 3z8,
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where zi ∈ Z/9Z (0 ≤ i ≤ 8) and ei ∈ Z/3Z (6 ≤ i ≤ 8). These relations yield
the decomposition of f of the form,

(5.16) f(x) = 1 + x+H(x),

where

(5.17)

H(x) = 3
(
z0 + z1x+ (z2 + z6 + 2z8)x2 + (z3 + z7)x3 + (z4 + z6)x4

+(z5 + z7)x7
)

+ 3
(
z6x

6 + z7x
7 + z8x

8
)

+ e6(x2 + x4 + x6) + e7(x3 + x5 + x7) + e8(2x2 + x8).

From Corollary 5.4 for Case 1, the minimal conditions of f are given by

a2 + a4 + a6 + a8 + 6 6≡ 0 [9], a2 + a4 + a6 + 7a8 + 6 6≡ 0 [9].

Through (5.15), they are respectively equivalent to

(5.18) z2 + z4 + e6 + e8 + 2 6≡ 0 [3], z2 + z4 + e6 + 2 6≡ 0 [3].

Let S be the set of all coefficient vectors, z := [z0, . . . , z5, e6, e7, e8, z6, z7, z8] ∈
(Z/9Z)6 × (Z/3Z)3 × (Z/9Z)3, satisfying the two conditions of (5.18). It is
straightforward to show that S has a cardinality of 4 · 319. Indeed, owing to a
complement set, the number of all vectors in S is equal to

321−#{[z0, . . . , z5, e6, e7, e8, z6, z7, z8] | z2 + z4 + e6 + e8 + 2 ≡ 0 (mod 3)}
−#{[z0, . . . , z5, e6, e7, e8, z6, z7, z8] | z2 + z4 + e6 + 2 ≡ 0 (mod 3)}
+#{[z0, . . . , z5, e6, e7, e8, z6, z7, z8] | z2 + z4 + e6 + e8 + 2 ≡ 0 (mod 3);

z2 + z4 + e6 + 2 ≡ 0 (mod 3)},

which is equal to

321 − 320 − 320 + 319 = 4 · 319.
Because there are possibly minimal polynomials in S that induce the same

polynomial modulo 27, we now count the subset of non-equivalent minimal
polynomials in S by considering an equivalence relation on S. For two vectors,
z and z′ in S, we say that z ∼ z′ if two polynomials, fz and fz′ , associated
with them induce the same minimal polynomial, where fz(x) = 1 + x+Hz(x)
and fz′(x) = 1 + x+Hz′(x) as in (5.17). Then, it is obvious to check that ∼ is
an equivalence relation on S. To count the equivalence class of any vector, z,
we start with the congruence,

1 + x+Hz(x) ≡ 1 + x+Hz′(x) (mod 27),

which immediately gives:

(5.19)
1

3
Hz(x) ≡ 1

3
Hz′(x) (mod 9).

Setting Z = (Z0, . . . , Z5, E6, E7, E8, Z6, Z7, Z8) := z− z′, we substitute x =
0, . . . , 8 into the congruence equation in (5.19) to obtain the system of linear
equations modulo 9 in terms of the Z ′is and E′is. Because we work over the
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ring, Z/9Z, the row echelon form of the resulting coefficient matrix is given by
the following matrix:

(5.20)



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 6 0 3 0
0 0 1 0 1 0 0 0 7 3 0 3
0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 3 0 0 0 0
0 0 0 0 0 3 0 0 6 0 0 0
0 0 0 0 0 0 3 0 6 0 0 0
0 0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 0 3 0 0 0


From the echelon form in (5.20), we yield the following trivial relations:

Z0 = 0;E6 = 0;E7 = 0;E8 = 0

since Zi ∈ Z/9Z and Ei ∈ Z/3Z. With these relations, some non-trivial rela-
tions are also given:

Z1 + Z3 + Z5 + 3Z7 ≡ 0 (mod 9);

Z2 + Z4 + 3Z6 + 3Z8 ≡ 0 (mod 9);

3Z3 ≡ 0 (mod 9);

3Z4 ≡ 0 (mod 9);

3Z5 ≡ 0 (mod 9).

From these relations, we observe that the minimal conditions for f in S are
invariant.

Writing Zi = 3wi, where wi ∈ Z/3Z for 1 ≤ i ≤ 5, and Zi = wi + 3di, where
wi, di ∈ Z/3Z for i = 6, 7, 8, from the above relations, we obtain

w1 + w3 + w5 + w7 ≡ 0 (mod 3);

w2 + w4 + w6 + w8 ≡ 0 (mod 3).
(5.21)

Because all wi run over Z/3Z, there are exactly 36 choices for the vectors,
[w1, w2, . . . , w8], satisfying the relations in (5.21). Thus, we conclude that the
number of vectors Z is 39; thus, the equivalence class of the coefficient vector,
z in S, has cardinality 4 · 319/39 = 4 · 310. Therefore, the number of non-
equivalent minimal polynomials in S is 4 · 310, as required. Thus, the proof is
complete. �

6. Minimal polynomials for arbitrary primes, p ≥ 5

It is of great interest to give a complete description of minimal polynomi-
als having integer coefficients modulo any positive composite. Using the Chi-
nese remainder theorem, this task is reduced to classifying transitive (minimal)
polynomials modulo any power of a fixed prime number p. From the previous
sections, we completed this work for cases where p = 2 or p = 3. Herein, we
work over Zp[x] for arbitrary primes p ≥ 5.
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6.1. Description of minimal polynomials of degree ≤ 2p − 1

The minimal criterion of polynomials in Zp[x] can be developed by the fol-
lowing well-known result, which follows from Propositions 2.4 and 2.5.

Proposition 6.1. A polynomial, f ∈ Zp[x], is minimal if and only if the
following conditions are satisfied:

(i) f is transitive modulo p;
(ii) (fp)′(0) ≡ 1 (mod p); and
(iii) fp(0) ∈ pZp \ p2Zp.

By reduction with δ from Theorem 3.1, we first restrict ourselves to poly-
nomials in Zp[x] of degree ≤ 2p − 1 and give a complete description of all
minimal polynomials of degree 2p − 1 at most, with integer coefficients in the
ring, Z/p2Z.

We are now in a position to prove Theorem 6.2 that shows the structure of
minimal polynomials in the set, R(p2).

Theorem 6.2. (1) A polynomial f ∈ Z/p2Z[x] is minimal in R(p2) if and only
if

f(x) = f0(x) + pf1(x),

where
(i) f0(x) =

∑2p−1
i=0 eix

i ∈ Z/pZ[x] is a transitive polynomial modulo p of
degree 2p − 1 at most, whose coefficient column vector, [e0, . . . , e2p−1]t, is a
unique solution to the linear system of the form,

Mx ≡ b (mod p),

where the coefficient matrix M is given by (6.6), and b = [B0, . . . , Bp−1, D0, . . .,
Dp−1]t in (6.3) is a given constant vector that is chosen among (p−1)!(p−1)p−1

choices satisfying conditions (i) and (ii) of Proposition 6.1.

(ii) the coefficient row vector, [z0, . . . , z2p−1] of f1(x)=
∑2p−1
i=0 zix

i∈Z/pZ[x],
satisfies the non-vanishing modulo p of the linear polynomial l:

l(z0, . . . , z2p−1) 6≡ 0 (mod p),

where l(z0, . . . , z2p−1) is given explicitly by the formula:

l(z0, . . . , z2p−1) =
1

p
fp0 (0) +

1

f ′0(0)
z0 +

p−1∑
i=1

wif1(f i0(0)),(6.1)

where, for 1 ≤ i ≤ p− 2,

wi =

p−1∏
j=i+1

f ′0(f j0 (0)) and wp−1 = 1.(6.2)

(2) #R(p2) = (p− 1)!(p− 1)ppp−1.
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Proof. For f(x) = a0 + a1x + · · · + a2p−1x
2p−1 ∈ Z/p2Z[x], a polynomial of

degree 2p − 1 at most, we set the constants, B0, . . . , Bp−1, D0, . . . , Dp−1, as
follows:

(6.3)

a0 = B0;

a1 + ap + a2p−1 = B1;

a2 + ap+1 = B2;

...

ap−1 + a2p−2 = Bp−1;

a1 = D0;

2p−1∑
i=1

iai = D1;

...

2p−1∑
i=1

i(p− 1)i−1ai = Dp−1.

Note that, because xp ≡ x (mod p), the polynomial, f , is reduced modulo
p to

(6.4) f(x) ≡ B0 +B1x+ · · ·+Bp−1x
p−1.

Furthermore, f ′(i) = Di for each 0 ≤ i ≤ p − 1. We next consider (6.3) as
a linear system in variables, x = [a0, . . . , a2p−1]t, for a given constant column
vector, b = [B0, . . . , Bp−1, D0, . . . , Dp−1]t modulo p, satisfying conditions (i)
and (ii) of Proposition 6.1:

(6.5) Mx ≡ b (mod p),

where M is a 2p× 2p coefficient matrix explicitly given by the following form:

(6.6) M =



1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 1 · · · 1
0 0 1 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · 1 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 1 2 · · · p− 1 p · · · 2p− 1
0 1 2 · 2 · · · (p− 1) · 2p−2 p · 2p−1 · · · (2p− 1) · 22p−2
...

...
...

...
...

...
...

...
0 1 2 · (p− 1) · · · (p− 1) · (p− 1)p−2 p · (p− 1)p−1 · · · (2p− 1) · (p− 1)2p−2


It is an interesting exercise to verify that the matrixM modulo p is invertible.

Indeed, one can use the row operations and Fermat’s little theorem to show
that the reduced row-echelon form of M is the identity matrix by deriving the
Vandermonde submatrix. The invertibility of M modulo p implies that the
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solution to the linear system in (6.5) is unique whenever a constant column
vector, b = [B0, . . . , Bp−1, D0, . . . , Dp−1]t modulo p, is selected appropriately.

Let us now count the number of constant column vectors b of the linear
system in (6.5), satisfying conditions (i) and (ii) of Proposition 6.1. Because
the reduced function of f in (6.4) turns out to be a transitive polynomial modulo
p from condition (i) of Proposition 6.1, it is easily seen that the first p entries,
[B0, B1, . . . , Bp−1] mod p, of b should be coefficients of a transitive polynomial
modulo p, which induces a full-cycle permutation on the finite field Zp/pZp;
hence, such a permutation is called a transitive one. Since there are exactly
(p − 1)! transitive permutations on Zp/pZp, by the Lagrange interpolation
formula in (6.19), there are the same number of transitive polynomials of degree
≤ p modulo p. Therefore, there are exactly (p − 1)! choices for the coefficient
vectors, [B0, B1, . . . , Bp−1] mod p, that correspond to transitive polynomials
modulo p. Simultaneously, the second p entries, [D0, D1, . . . , Dp−1] mod p, of
the constant vector to be chosen, b, should satisfy condition (ii) of Proposition
6.1:

(fp)′(0) ≡ f ′(0) · f ′(1) · · · f ′(p− 1) ≡ D0 ·D1 · · ·Dp−1 ≡ 1 (mod p).

From this congruence, there are exactly (p − 1)p−1 choices for such vectors,
[D0, D1, . . . , Dp−1] mod p. Taken together, there are exactly (p− 1)!(p− 1)p−1

choices for the constant vectors,

b = [B0, . . . , Bp−1, D0, . . . , Dp−1]t mod p

such that conditions (i) and (ii) of Proposition 6.1 are satisfied simultaneously.
See Remark 6.6 for more details on this.

Let E = [e0, . . . , e2p−1] mod p be a unique solution to the linear system in
(6.5) for a constant vector, b, which is chosen from (p− 1)!(p− 1)p−1 choices.
To a solution vector, E, we associate a polynomial,

f0(x) =

2p−1∑
i=0

eix
i ∈ Z/pZ[x].

Then, f(x) ≡ f0(x) (mod p) and f ′(x) ≡ f ′0(x) (mod p). Next, using f0, it
remains to find a simpler condition equivalent to condition (iii) of Proposition
6.1. To do so, we first derive the following congruence with a0 = e0 + pz0:

(6.7)
1

p
fp(0) ≡ 1

p
fp−1(e0) +

1

f ′0(0)
z0 (mod p).

Indeed, the Taylor theorem yields

f2(0) = f(e0 + pz0) ≡ f(e0) + pz0f
′(e0) ≡ f(e0) + pz0f

′
0(e0) (mod p2).

Similarly,

f3(0) ≡ f(f(e0) + pz0f
′
0(e0)) ≡ f2(e0) + pz0f

′
0(e0)f ′0(f0(e0)) (mod p2).

Continuing in this fashion, we get

fp(0) ≡ fp−1(e0) + pz0f
′
0(e0)f ′0(f0(e0)) · · · f ′0(fp−20 (e0)) (mod p2).



20 S. JEONG

Since
∏p−1
i=0 f

′(i) ≡
∏p−1
i=0 f

′
0(i) ≡ 1 (mod p), because f ≡ f0 (mod p) is transi-

tive modulo p, and f satisfies condition (ii), it gives the following congruence:

fp(0) ≡ fp−1(e0) +
1

f ′0(0)
pz0 (mod p2).

Thus, division by p yields a desired congruence in (6.7).
To find a simpler formula for fp(0), we proceed a step further to derive a

formula equivalent to fp−1(e0) modulo p2. To this end, we write ai = ei +
pzi (0 ≤ i ≤ 2p− 1) to decompose f into a sum of two polynomials:

f(x) = f0(x) + pf1(x),

where

f1(x) =

2p−1∑
i=0

zix
i ∈ Z/pZ[x].

A task here is to find conditions on zi’s modulo p, equivalently on ai modulo
p2, so that f is a transitive polynomial modulo p2. Thus, f is minimal. This
can be done because we know the polynomial, f0, from scratch. Therefore, the
decomposition of f can be used to compute fp−1(e0) modulo p2. First, the
Taylor theorem gives

f2(e0) ≡ f(f0(e0) + pf1(e0)) ≡ f(f0(e0)) + pf1(e0)f ′(f0(e0)) (mod p2)

≡ f20 (e0) + pf1(f0(e0)) + pf1(e0)f ′0(f0(e0)) (mod p2).

Once again

f3(e0) ≡ f(f20 (e0) + pf1(f0(e0)) + pf1(e0)f ′0(f0(e0)))

≡ f30 (e0) + pf1(f20 (e0)) + (pf1(f0(e0)) + pf1(e0)f ′0(f0(e0))) f ′0(f20 (e0))

≡ f30 (e0) + pf1(f20 (e0)) + pf1(f0(e0))f ′0(f20 (e0))

+ pf1(e0)f ′0(f0(e0))f ′0(f20 (e0)) (mod p2).

Iterating this process, we have modulo p2,

fp−1(e0) ≡ fp−10 (e0) + pf1(fp−20 (e0)) + pf1(fp−30 (e0))f ′0(fp−20 (e0))

+ pf1(fp−40 (e0))f ′0(fp−20 (e0))f ′0(fp−30 (e0)) + · · ·

+ pf1(f0(e0)f ′0(f20 (e0))f ′0(f30 (e0)) · · · f ′0(fp−20 (e0)

+ pf1(e0)f ′0(f0(e0))f ′0(f20 (e0)) · · · f ′0(fp−20 (e0)).

Setting wi =
∏p−2
j=i f

′
0(f j0 (e0)) =

∏p−1
j=i+1 f

′
0(f j0 (0)) for 1 ≤ i ≤ p−2, and wp−1 =

1, it is equal to

fp−1(e0) ≡ fp−20 (e0) + p

p−1∑
i=1

wif1(f i0(0)) (mod p2).(6.8)
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From (6.7) and (6.8), the formula for 1
pf

p(0) in condition (iii) of Proposition

6.1 is expressed explicitly in terms of f0 and f1:

1

p
fp(0) ≡ 1

p
fp0 (0) +

1

f ′0(0)
z0 +

p−1∑
i=1

wif1(f i0(0)) (mod p).(6.9)

Henceforth, the right-hand side of (6.9) is denoted by l(z0, . . . , z2p−1). From the
polynomial, f1, it turns out that l(z0, . . . , z2p−1) is a polynomial in variables,
z0, . . . , z2p−1, with coefficients in Z/pZ, of degree 1 at most. Finally, by means
of Lemma 6.3 below, the condition equivalent to condition (iii) is determined
by the non-vanishing modulo p of a linear polynomial l in (6.1) or (6.9):

l(z0, . . . , z2p−1) 6≡ 0 (mod p).

Thus, we complete the proof of the first part of Theorem 6.2.

Lemma 6.3. l(z0, . . . , z2p−1) is a linear polynomial.

Proof. Note that l(z0, . . . , z2p−1) is a polynomial of degree 1 at most in each
variable, because it is observed from both (6.1) and the polynomial represen-
tation of f1 that l is of the form

l(z0, . . . , z2p−1) =
1

p
fp0 (0) + (

1

f ′0(0)
+

p−1∑
i=1

wi)z0 +

2p−1∑
j=1

(
p−1∑
i=1

(f i0(0))jwi

)
zj .

The result now follows by showing that l(z0, . . . , z2p−1) has a non-vanishing
coefficient of variable zj for some 1 ≤ j ≤ p − 1. Suppose that all (linear)
coefficients of variables z1, . . . , zp−1 in the above expansion of l(z0, . . . , z2p−1)
are 0 modulo p. Then, we will obtain a homogeneous linear system in variables
w1, . . . , wp−1, whose coefficient matrix is of the Vandermonde related to the

p − 1 distinct values, f0(0), . . . , fp−10 (0) modulo p. The invertibility of the
Vandermonde matrix implies that the solution vector, [w1, . . . , wp−1], is trivial,
which contradicts that the wi’s are all non-zero modulo p from condition (ii)
of Proposition 6.1 or Proposition 2.2. �

Let us now prove part (2) of Theorem 6.2 using Lemma 6.3. For a fixed con-
stant column vector, b, out of (p−1)!(p−1)p−1 choices, we need to count the set
of non-equivalent minimal polynomials in R(p2) that correspond to all coeffi-
cient vectors, [z0, . . . , z2p−1] mod p, satisfying the condition, l(z0, . . . , z2p−1) 6≡
0 (mod p). For this, we consider the set,

S := {[z0, . . . , z2p−1] ∈ (Z/pZ)2p | l(z0, . . . , z2p−1) 6≡ 0 (mod p)}.
Then, owing to Lemma 6.3, S is of cardinality (p − 1)p2p−1 by counting a
complementary set. For z = [z0, . . . , z2p−1] and z′ = [z′0, . . . , z

′
2p−1] in S,

we define a relation z ∼ z′ on the set S, if they induce the same minimal
polynomial, f ∈ R(p2), which has the decomposition,

f = f0 + pf1,z ≡ f0 + pf1,z′ (mod p2),(6.10)
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where f1,z(x) =
∑2p−1
i=0 zix

i and f1,z′(x) =
∑2p−1
i=0 z′ix

i. It is easy to check that
∼ is an equivalence relation on S. Because xp ≡ x (mod p), f1,z(x) and f1,z′(x)

are reduced to the polynomial,
∑p−1
i=0 Bix

i of the form in (6.4), the congruence
in (6.10) is equivalent to

p−1∑
i=0

Bi(z)xi ≡
p−1∑
i=0

Bi(z
′)xi (mod p),(6.11)

where Bi(v) denotes the coefficient obtained by replacing elements defining Bi
with entries of the vector, v. It is easily seen that the congruence (6.11) is
equivalent to stating that z− z′ lies in the null space of the matrix, T , where
T is the upper p × 2p submatrix of M in (6.6). Because T has rank p, the
nullity of T is p, so that the set of equivalence classes on S has cardinality
(p − 1)p2p−1/pp = (p − 1)pp−1. Thus, we conclude that, for each b, there
are exactly (p− 1)pp−1 non-equivalent minimal polynomials. Thus, #R(p2) =
(p−1)!(p−1)ppp−1. The proof of part (2) of Theorem 6.2 is complete, thereby
finishing the proof of part (2) of Theorem 3.1. �

Remark 6.4. The method described in Theorem 6.2 can be compared with those
proposed by Anashin [3, Page 296] and the present author [10]. In Anashin’s
work, one needed to calculate the interpolation polynomials, fϕ and fϕ,ψ in
[3], and to test whether they were transitive modulo p2. In the method of [10],
one used the minimal conditions of a polynomial represented as the binomial
coefficient polynomials. In these respects, the proposed method is more natural
and efficient than the existing methods, and it applies to polynomials of any
degree, as in Subsection 6.2.

We now illustrate the procedure of Theorem 6.2 with some examples con-
structed from MATLAB computations.

Example 1. Let ϕ =(1 3 2 4 5 6 0) be a single-cycle permutation on F7. By the
Lagrange interpolation formula in (6.19) or [12, Equation 7.1], the interpolation
polynomial, fϕ(x) = 3x5 + 6x4 + 3x3 + 5x2 + 6x + 1 is determined. Thus,
the vector [B0, . . . , B6] mod 7 = [1, 6, 5, 3, 6, 3, 0] is found. For a well-chosen
vector, [B0, . . . , B6, D0, . . . , D6] mod 7 = [1, 6, 5, 3, 6, 3, 0, 1, 1, 1, 1, 1, 6, 6], we
find a unique solution modulo 7, [1, 1, 6, 0, 6, 5, 1, 2, 6, 3, 0, 5, 6, 3], to the linear
system in (6.5), which gives

f0(x) = 3x13 + 6x12 + 5x11 + 3x9 + 6x8 + 2x7 + x6 + 5x5 + 6x4 + 6x2 + x+ 1.

From f0, we obtain f70 (0) ≡ 14 (mod 72), [f ′0(0), f ′0(1), . . . , f ′0(6)] mod 7 =
[1, 1, 1, 1, 1, 6, 6] and [w1, w2, . . . , w6] mod 7 = [1, 1, 1, 1, 6, 1]. Hence, we obtain

f1 =
∑13
i=0 zix

i, whose coefficients satisfy the minimal condition in (6.1):

l(z0, . . . , z13) = 5z0 + 4z1 + 6z2 + 2z3 + 3z4 + z5 + 4z6 + 4z7

+ 6z8 + 2z9 + 3z10 + z11 + 4z12 + 4z13 + 2 6≡ 0 (mod 7).
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Thus, by taking a vector, [z0, . . . , z13] mod 7 = [5, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],
satisfying this condition, we obtain the minimal polynomial:

f(x) = f0 + 7f1

= 3x13 + 6x12 + 5x11 + 3x9 + 6x8 + 2x7 + x6 + 5x5 + 20x4

+ 14x3 + 6x2 + x+ 36,

whose single-cycle orbit modulo 72 is given by

(0, 36, 45, 9, 39, 33, 27, 14, 1, 10, 23, 4, 47, 13, 28, 15, 24, 37, 18, 12, 48, 42, 29, 38,

2, 32, 26, 34, 7, 43, 3, 16, 46, 40, 20, 21, 8, 17, 30, 11, 5, 6, 35, 22, 31, 44, 25, 19, 41).

For another minimal polynomial, take a vector, [z0, . . . , z13] mod 7 = [1, 1, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 1], that satisfies the same minimal condition and obtain

f(x) = 10x13 + 6x12 + 5x11 + 3x9 + 6x8 + 2x7 +x6 + 5x5 + 13x4 + 13x2 + 8x+ 8,

whose single-cycle orbit modulo 72 is given by

(0, 8, 38, 16, 46, 40, 41, 21, 29, 10, 37, 18, 12, 20, 42, 1, 31, 9, 39, 33, 48, 14, 22, 3,

30, 11, 5, 27, 35, 43, 24, 2, 32, 26, 6, 7, 15, 45, 23, 4, 47, 34, 28, 36, 17, 44, 25, 19, 13).

6.2. Description of minimal polynomials of any degree

Herein, we provide a method of finding the minimal conditions of a polyno-
mial, f ∈ Zp[x], of any degree in terms of its coefficients, as in the case with
p = 3.

For f(x) = a0 + a1x+ · · ·+ adx
d ∈ Zp[x], a polynomial of degree d ≥ 2p, we

set the constants, B0, . . . , Bp−1, D0, . . . , Dp−1, as follows:

a0 = B0;∑
i≡1 (mod p−1)

ai = B1;

∑
i≡2 (mod p−1)

ai = B2;

...(6.12) ∑
0<i≡0 (mod p−1)

ai = Bp−1;

a1 = D0;

d∑
i=1

iai = D1;

...
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d∑
i=1

i(p− 1)i−1ai = Dp−1.

As in the case for polynomials of degree at most 2p − 1, the equations in
(6.12) will be considered a linear system in variables x = [a0, . . . , ad]

t for b =
[B0, . . . , Bp−1, D0, . . . , Dp−1]t modulo p, a given constant column vector:

(6.13) M̃x ≡ b (mod p),

where M̃ is the 2p×(d+1) coefficient matrix of the form, M̃ = [MM ′], where M
is the 2p×2p matrix in (6.6), and M ′ is the remaining 2p×(d−2p−1) submatrix.

We observe that M̃ modulo p has a certain pattern. Indeed, all columns except
for the first column of the submatrix corresponding to Bi appear periodically
with periodic length p − 1, as does the submatrix corresponding to Di’s with
periodic length p(p− 1), because if i ≡ j (mod p(p− 1)), then iαi−1 ≡ jαj−1

(mod p) for α ∈ {1, . . . , p − 1}. For this reason, we may assume that the
degree of f is d = p(p− 1)k + 2p− 1, if necessary, by adding the terms whose
coefficients are zero. Note that there are exactly (p− 1)!(p− 1)p−1 choices for
a constant column vector, b, that satisfy conditions (i) and (ii) of Proposition
6.1, as shown in the previous section. For such a well-chosen b, the reduced
row echelon form of the augmented coefficient matrix, [M̃ |b], is given by the
matrix of the form,

[I2pR|E],

where I2p is the 2p × 2p identity matrix, and R and E is the reduced part of

M ′ and b, respectively. Owing to the pattern of M̃ , R = (Rij) has a certain
pattern that the first p(p − 1) column vectors appear exactly k times in the
column order. Thus, the parametric representations to the concerned linear
system are given by the equations of the following form:

(6.14)

a0 = e0 + pz0;

a1 = e1 + pz1;

a2 = e2 + pz2 −
∑
j∈J2

ajR2j ;

...

a2p−1 = e2p−1 + pz2p−1 −
∑

j∈J2p−1

ajR(2p−1)j ,

where [e0, . . . , e2p−1]t = E and for each 0 ≤ i ≤ 2p − 1, the index set, Ji, is
defined as Ji = {j | 2p+ 1 ≤ j ≤ d+ 1 and Rij 6≡ 0 (mod p)}. Note that Ji is
the empty set for i = 0, 1.

Substituting these relations in (6.14) into f(x) yields

f(x) = f0(x) + pf1(x),(6.15)
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where f0(x) =
∑2p−1
j=0 ejx

j , and

f1(x) =

2p−1∑
j=0

zjx
j +

1

p

d∑
j=2p

ajhj(x),(6.16)

where hj is a polynomial obtained by collecting the non-zero terms whose
coefficient is aj . Because the polynomial f0 is transitive modulo p, f0 and
satisfies the following properties:

f(x) ≡ f0(x) (mod p); f ′(x) ≡ f ′0(x) (mod p).

Hence, as in (6.9), in order for f to be minimal, its minimal condition should
be satisfied with the non-vanishing modulo p2 of

fp(0) ≡ fp0 (0) +
1

f ′0(0)
pz0 + p

p−1∑
i=1

wif1(f i0(0)) (mod p2),(6.17)

where wi =
∏p−1
j=i+1 f

′
0(f j0 (0)) for 1 ≤ i ≤ p − 2, and wp−1 = 1, as in (6.2).

Substituting pzi in (6.14) into (6.17) gives the minimal condition for f , which
are expressed in terms of its coefficients. As in (6.1), from (6.17), the mini-
mal condition of f is also given by the non-vanishing modulo p of the linear
polynomial,

l(z0, . . . , zd) =
1

p
fp0 (0) +

1

f ′0(0)
z0 +

p−1∑
i=1

wif1(f i0(0)) (mod p),(6.18)

where wi is given as above. The discussion above then summarizes the following
result:

Theorem 6.5. A polynomial f(x) = a0 + a1x + · · · + adx
d ∈ Z/p2Z[x] is

minimal if and only if

f(x) = f0(x) + pf1(x),

where
(i) f0(x) =

∑2p−1
i=0 eix

i ∈ Z/pZ[x] is determined as in (i) of Theorem 6.2,
and

(ii) the polynomial f1(x) in (6.16) satisfies the non-vanishing modulo p of
the linear polynomial l(z0, . . . , zd) in (6.18).

Remark 6.6. Every minimal polynomial, f ∈ Zp[x], induces a permutation,
ϕ on Fp, of full length; hence, the task of finding a minimal polynomial of
any degree is to first find the coefficient vector, [B0, . . . , Bp−1] (mod p) of the
reduced function modulo p, fϕ, which is obtained by the Lagrange interpolation
formula [12]:

fϕ(x) =
∑
α∈Fp

ϕ(α)(1− (x− α)p−1).(6.19)
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Indeed, with this formula, for each j, Bj is given by

Bj = −
∑
α∈Fp

ϕ(α)αp−1−j .

Next, we select a vector, [D0, . . . , Dp−1] (mod p), satisfying condition (ii) of
Proposition 6.1, which can be easily done by finding the inverse modulo p, of
the product, D0 · · ·Dp−2, after these p − 1 non-zero elements are randomly
chosen.

Remark 6.7. One can find a complete list of all possible minimal conditions for
polynomials f ∈ Zp[x] in terms of their coefficients, provided that a list of all
(p− 1)!(p− 1)p−1 constant vectors, b = [B0, . . . , Bp−1, D0, . . . , Dp−1]t modulo
p, satisfying conditions (i) and (ii) of Proposition 6.1, is completely found.

Remark 6.8. It is crucial to decide if a given polynomial, g ∈ Zp[x], is minimal.
To this end, we use Theorem 3.1 to find the remainder, f(x) of g, via reduction
with δ. Then, using Hermite’s criterion [12, Theorem 7.4.] or Theorem 6.9, we
determine whether or not f(x) is bijective modulo p, and then we decide if it
is of a full cycle. If so, we must check whether or not f satisfies condition (ii)
of Proposition 6.1 by finding its derivatives at x = 0, . . . , p − 1. If f passes
through this process, one can find the f0 by solving for the linear system in
(6.5) for an obtained vector, b. With f0, after finding f1, we can check if f
satisfies the minimal condition in (6.1). If so, f (hence g) is declared to be
minimal.

We state Hermite’s criterion for permutation polynomials over a finite prime
field, Fp.

Theorem 6.9 (Hermite’s Criterion). Let Fp be a prime field. Then, f ∈ Fp[x]
is a permutation polynomial over Fp if and only if the following two conditions
hold:

(i) f has exactly one root in Fp; and
(ii) for each integer t with 1 ≤ t ≤ p−1, the reduction of f(x)t mod (xp−x)

has degree ≤ p− 2.

Corollary 6.10. If d > 1 is a divisor of p − 1, then there is no minimal
polynomial on Zp of degree d.

Proof. Suppose such a minimal polynomial exists, then it is a permutation
polynomial modulo p of full cycle. However, such a permutation polynomial
does not exist from [12, Corollary 7.5] of Hermite’s criterion. Thus, the proof
is complete. �

Example 2. We use the method described above to find the minimal condi-
tions of a polynomial of degree 29, f(x) =

∑29
i=0 aix

i ∈ Z5[x], with a prescribed
condition on b = [B0, . . . , B4, D0, . . . , D4]t mod 5 = [2100014411]. From the
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reduced row echelon form of the augmented coefficient matrix in (6.13), the
parametric representations are given by the following equations:

(6.20)

a0 = 2 + 5z0;

a1 = 1 + 5z1;

a2 = 3 + 5z2 + a10 + 2a14 + 3a18 + 4a22;

a3 = 0 + 5z3 + a11 + 2a15 + 3a19 + 4a23;

a4 = 1 + 5z4 + a12 + 2a16 + 3a20 + 4a24;

a5 = 4 + 5z5 + a13 + 2a17 + 3a21 + 4a25;

a6 = 2 + 5z6 + 3a10 + 2a14 + a18 + 4a26;

a7 = 0 + 5z7 + 3a11 + 2a15 + a19 + 4a27;

a8 = 4 + 5z8 + 3a12 + 2a16 + a20 + 4a28;

a9 = 1 + 5z9 + 3a13 + 2a17 + a21 + 4a29.

Thus,

f(x) = f0(x) + 5f1(x),

where f0(x) = 2 + x+ 3x2 + x4 + 4x5 + 2x6 + 4x8 + x9, and

f1(x) =

9∑
i=0

zix
i +

1

5

29∑
i=10

aihi(x),

where, for 2 ≤ i ≤ 5,

h8+i(x) = xi + 3x4+i + x8+i,

h12+i(x) = 2xi + 2x4+i + x12+i,

h16+i(x) = 3xi + x4+i + x16+i

and 2 ≤ i ≤ 9, h20+i(x) = 4xi + x20+i. Because f0 ≡ 2 + x (mod 5), its orbit
mod 5 is given by (0 2 4 1 3), and, because [f ′0(0), f ′0(1), f ′0(2, )f ′0(3), f ′0(4)] mod 5
= [1, 4, 4, 1, 1], we have [w1, w2, w3, w4] mod 5 = [4, 4, 1, 1]. Hence, from (6.17),
we get

f5(0) ≡ 5 + 5f1(0) + 5f1(1) + 20f1(2) + 5f1(3) + 20f1(4) (mod 52).

Because it is easy to compute hi(α) modulo 52 for 0 ≤ α ≤ 4 and i ≥ 10,

f5(0) ≡ 5a11 + 15a13 + 5a15 + 15a17 + 5a19 + 15a21 + 5a23 + 15a25 + 5a27

+ 15a29 + 5z0 + 15z1 + 5z3 + 15z5 + 5z7 + 15z9 + 5 (mod 52).

Substituting 5zi in (6.20) into the above equation yields the minimal condition
of f :

(6.21)
a0 + 3a1 + a3 + 3a5 + a7 + 3a9 + a11 + 3a13 + a15 + 3a17 + a19

+ 3a21 + a23 + 3a25 + a27 + 3a29 + 10 6≡ 0 (mod 52).
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If we take [a0, . . . , a29] = [2, 1, 26, 3, 28, 14, 19, 13, 29, 23, 0, 1, 2, 0, 3, 1, 2, 0, 3, 0,
3, 2, 2, 0, 3, 1, 2, 2, 3, 5] satisfying the conditions in (6.20) and (6.21), then, the
minimal polynomial, f , of degree 29 is given by

(6.22)

f(x) = 5x29 + 3x28 + 2x27 + 2x26 + x25 + 3x24 + 2x22 + 2x21 + 3x20

+ 3x18 + 2x16 + x15 + 3x14 + 2x12 + x11 + 23x9 + 4x8 + 13x7

+ 19x6 + 14x5 + 3x4 + 3x3 + x2 + x+ 2,

whose single-cycle orbit modulo 52 is determined by

(0, 2, 4, 16, 3, 20, 22, 9, 21, 23, 15, 17, 14, 1, 18, 10, 12, 19, 6, 13, 5, 7, 24, 11, 8).

As an illustration of Remark 6.8, let us show again that the polynomial in
(6.22) is minimal. By dividing the polynomial by

(
x
10

)
, its remainder is reduced

modulo 25 to

f(x) = 6x9 + 24x8 + +5x7 + 2x6 + 24x5 + 21x4 + 15x3 + 3x2 + 16x+ 2.

From Theorem 6.2, f is decomposed as the sum, f = f0 + 5f1, where f0 =
x9+4x8+2x6+4x5+x4+3x2+x+2, f1 = x9+4x8+x7+4x5+4x4+3x3+3x.
Using this decomposition, by (6.1), the minimal condition of f is determined by
the non-vanishing modulo 5 of l(z0, . . . , z9) = z0 + 1. Because the coefficients
of f1 satisfy this condition, f is minimal, thus, so is the polynomial in (6.22).

We use the above minimality criterion to reprove the minimal conditions of
polynomials over Zp of a special form in [9, Theorem 1.1].

Corollary 6.11. Let f(x) = a0 + a1x+ · · ·+ adx
d ∈ Zp[x] be a polynomial of

degree d ≥ 1 that satisfies the following system of relations:

a0 6≡ 0 (mod p);

a1 ≡ 1 (mod p);

ai ≡ 0 (mod p) for i ≥ 2;∑
i>0;i≡0 (mod p−1)

ai/p 6≡ a0 (mod p).

Then, f is minimal.

Proof. From the assumption, writing ai = ei + pzi for all 0 ≤ i ≤ d with
0 < e0 < p, e1 = 1, and ei = 0 for i ≥ 2, f is decomposed into a sum,

f = f0 + pf1,

where f0 = x+e0 and f1 =
∑d
i=0 zix

i ∈ Zp[x] is a polynomial of degree d. From
Theorem 6.2, we may assume that d ≥ 2p. Note that f0 is a transitive linear
polynomial modulo p, whose coefficient vector, [e0, 1, 0, . . . , 0] is a solution to

the linear system, M̃x ≡ b (mod p), in (6.13) for a chosen constant vector,
b = [e0, 1, 0, . . . , 0, 1, . . . , 1]t, the last p entries of which are all 1, because
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f ′ ≡ f ′0 = 1 (mod p). Furthermore, because wi = 1 for all i, we compute
the minimal condition, l of f , in (6.18) as follows:

l(z0, . . . , zd) =

p−1∑
j=1

f1(je0) + z0 + e0

=

p−1∑
j=1

d∑
i=0

zi(je0)i + z0 + e0

=

d∑
i=0

zi

p−1∑
j=1

(je0)i

+ z0 + e0.

Because je0 are distinct modulo p for 1 ≤ j ≤ p − 1, by the well konwn fact
that

∑
α∈F∗p

αi = −1 if (p− 1) | i, and 0 otherwise [12, Lemma 7.3], we have

l(z0, . . . , zd) ≡ −
d∑

i=1,(p−1)|i

zi + e0 (mod p).

We conclude from Theorem 6.5 that f is minimal as long as l(z0, . . . , zd) is non-
zero modulo p, which is equivalent to the last condition in the assumption. �

Corollary 6.12. A linear polynomial, f(x) = a0 + a1x ∈ Zp[x], is minimal if
and only if a0 6≡ 0 (mod p), and a1 ≡ 1 (mod prp), where rp = 2 if p = 2 and
1 otherwise.

Proof. This result is well-known. See, for example, [7, Theorem 1] or [3, Theo-
rem 4.36]. We give a simple and alternative proof using Theorem 6.2 for p ≥ 5.
The proof for p = 2 and 3 follows respectively from Lemma 4.1 and Corollary
5.4 cases (i) and (v). Thus, we treat only the cases, p ≥ 5. It is simple to
check from [3, Lemma 4.37] that f is transitive modulo p if and only if a0 6≡ 0
(mod p) and a1 ≡ 1 (mod p). We show here that these conditions are neces-
sary and sufficient for the transitivity of f modulo p2, being equivalent to the
minimality of f . As in the proof of Corollary 6.11, f is decomposed into a sum,
f = f0 + pf1, where f0 = x + e0, f1 = z0 + z1x ∈ Zp[x]. Then, f is minimal
precisely when e0 or a0 is non-zero modulo p, because l(z0, z1) = e0 for any
values of z0 and z1. �

Corollary 6.13. A polynomial, f(x) = a0 + a1x+ a2x
2 ∈ Zp[x], is minimal if

and only if one of the following occurs:

(i) For p = 2, a0 ≡ 1 (mod p), a2 ≡ 0 (mod p), a1 + a2 ≡ 1 (mod p2);
(ii) For p ≥ 3, a0 6≡ 0 (mod p), a1 ≡ 1 (mod p), a2 ≡ 0 (mod p).

Proof. The proof is similar to that of Corollary 6.12, together with Proposition
2.2(iii) for the case, p ≥ 5. �

Corollary 6.14. A polynomial, f(x) = a0 + a1x + a2x
2 + a3x

3 ∈ Zp[x], is
minimal if and only if one of the following occurs:
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(i) For p = 2, a0 ≡ 1 (mod p), a1 ≡ 1 (mod p), a3 ≡ 2a2 (mod p2),
a1 + a2 ≡ 1 (mod p2);

(ii) For p = 3, a0 6≡ 0 (mod p), a1 − 1 ≡ a2 ≡ a3 ≡ 0 (mod p), a2/p 6≡ a0
(mod p);

(iii) For p ≥ 5, a0 6≡ 0 (mod p), a1 − 1 ≡ a2 ≡ a3 ≡ 0 (mod p).

Proof. We present case (iii) only, because cases (i) and (ii) follow from Corollary
4.4 and Corollary 5.4 cases (i) and (v), respectively . The sufficiency for case
(iii) is immediate from Corollary 6.11. Conversely, the proof follows easily from
the observation that a3 ≡ 0 (mod p). Suppose this is not the case. Then, we
derive a contradiction by following the argument of [9, Proposition 3.2]. Indeed,
by a change of variable, we see that the minimal polynomial, f , of degree 3 is
conjugate modulo p2 to a polynomial, Q(x) = a3x

3 + e1x + e0, with ei ∈ Zp.
Then, Dickson’s result [5] or [12, Table 7.1 on p. 352] forces us to obtain e1 = 0,
and p ≡ 2 (mod 3). Because Q is not minimal, neither is f . �

Corollary 6.15. A polynomial, f(x) = a0 +a1x+a2x
2 +a3x

3 +a4x
4 ∈ Zp[x],

is minimal if and only if one of the following occurs:

(i) For p = 2, a0 ≡ 1 (mod p), a1 ≡ 1 (mod p), a3 ≡ 2a2 (mod p2),
a1 + a2 ≡ a4 + 1 (mod p2);

(ii) For p = 3, a0 6≡ 0 (mod p), a1 − 1 ≡ a2 ≡ a3 ≡ 0 (mod p), (a2 +
a4)/p 6≡ a0 (mod p);

(iii) For p = 5, a0 6≡ 0 (mod p), a1 − 1 ≡ a2 ≡ a3 ≡ 0 (mod p), a4/p 6≡ a0
(mod p);

(iv) For p ≡ 1 (mod 3), a0 6≡ 0 (mod p), a1 − 1 ≡ a2 ≡ a3 ≡ a4 ≡ 0
(mod p).

For all p > 7, such that p ≡ 2 (mod 3), the conditions are only sufficient.

Proof. The proof for cases (i) and (ii) is similar to that of Corollary 6.14. We
first prove the necessity of p = 5, because its converse follows from Corollary
6.11. Now, it suffices to show that there is no minimal polynomial, f , satisfying
a3 6≡ 0 (mod p). Suppose that it is not the case. Then, f modulo p is a
permutation polynomial of degree 3 (with full cycle), and it is easily observed
that a4 ≡ 0 (mod p). By Lagrange’s interpolation formula, this polynomial f is
reduced modulo p to one of all possible 20 permutation polynomials modulo p of
degree 3, whose derivatives all have a root modulo p. Thus, we conclude that f
is not minimal. For case (iv) with p = 7, we see through an exhaustive search
that there is no minimal polynomial with either a4 6≡ 0 (mod 7) or a4 ≡ 0
(mod 7), and a3 6≡ 0 (mod 7). Hence, the conditions provided are necessary
and sufficient. For all primes, p > 7, we note that a4 ≡ 0 (mod 7), otherwise
Dickson’s result [5] or [12, Table 7.1 on p. 352] forces p = 7. Additionally, if
a3 6≡ 0 (mod 7), then, Dickson’s result again forces us to have p ≡ 2 (mod 3).
Thus, the above conditions are only sufficient from Corollary 6.11. Otherwise,
it is straightforward to see that they are necessary and sufficient. �
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Remark 6.16. It is of interest to give a complete list of minimal polynomials in
Zp[x] of small primes, p, by using the method of Theorem 6.5.
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