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CROSS-INTERCALATES AND GEOMETRY

OF SHORT EXTREME POINTS IN THE LATIN

POLYTOPE OF DEGREE 3

Bokhee Im and Jonathan D. H. Smith

Abstract. The polytope of tristochastic tensors of degree three, the
Latin polytope, has two kinds of extreme points. Those that are at a

maximum distance from the barycenter of the polytope correspond to

Latin squares. The remaining extreme points are said to be short. The
aim of the paper is to determine the geometry of these short extreme

points, as they relate to the Latin squares.
The paper adapts the Latin square notion of an intercalate to yield

the new concept of a cross-intercalate between two Latin squares. Cross-

intercalates of pairs of orthogonal Latin squares of degree three are used
to produce the short extreme points of the degree three Latin polytope.

The pairs of orthogonal Latin squares fall into two classes, described as

parallel and reversed, each forming an orbit under the isotopy group. In
the inverse direction, we show that each short extreme point of the Latin

polytope determines four pairs of orthogonal Latin squares, two parallel

and two reversed.

1. Introduction

For a positive integer n (called the degree here to distinguish from the order
of a tensor, and to extend the terminology of permutations), an n × n Latin
square with symbols from an alphabet {a1, . . . , an} may be identified with an
ordered n-tuple

(1.1) T = (T1, . . . , Tn)

of permutation matrices, where for 1 ≤ i ≤ n, the permutation matrix Ti
specifies the positions of the symbol ai in the Latin square. More precisely, for
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1 ≤ i, j, k ≤ n, the entry [Ti]jk of Ti is 1 if and only if the symbol ai appears
in the j-th row and the k-th column of the Latin square.

Permutation matrices are the vertices of the Birkhoff polytope Ωn consisting
of all bistochastic matrices, matrices having non-negative real entries, where all
the rows and all the columns sum to 1. Bistochastic matrices may be considered
as relaxations of permutation matrices. In this paper, we are concerned with
tristochastic tensors or approximate Latin squares [11, Defn. 3.4(b)], which are
comparable relaxations of Latin squares. Thus a tristochastic tensor (of degree
n) is an ordered list of n bistochastic n × n-matrices whose sum is Jn, the all
ones n× n-matrix.

The set of all tristochastic tensors of degree n forms a polytope, the Latin
polytope Λn [11, §3.3]. Latin squares of degree n are extreme points of Λn, but
they are not the only ones. Fischer and Swart found 54 non-Latin extreme
points of Λ3 by a computer search [4, p. 184]. Now consider the set 2nn of
matrices of degree n with entries from the set 2 = {0, 1}. For an element
A = [aij ]1≤i,j≤n of 2nn, set z(A) =

∣∣{(i, j) | aij = 0}
∣∣. Then

Ln = n!
∑
A∈2n

n

(−1)z(A)

(
perA

n

)
is the number of Latin squares of degree n [15], while asymptotically,

(1.2) L
3
2 +o(1)
n

is a lower bound for the number of extreme points of Λn [12, Th. 1.5].
Jurkat and Ryser presented the prototype [9, Th. 3.3] for what became a

series of extremality criteria for elements of Λn and its higher-order analogues
(compare [3, 10, 12], etc.), and it is their criterion which will be used in this
paper. They made the following comments about the extreme points of Λn in
comparison with those of Ωn:

“But the corresponding situation for 3-dimensional extremal
stochastic matrices is vastly more complicated. In fact these
matrices are not known to us explicitly for general n”

[9, p. 195], and then:

“But we have been unable to obtain an explicit description of
the extremal stochastic matrices”

[9, p. 217]. Now, fifty years later, there are various possible approaches to
understanding the non-Latin extreme points of the Latin polytopes, such as
the method of [10, §4], or the graph-theoretical approach of [12] that underlies
the lower bound (1.2).

Our goal is to further a more geometric approach to a Latin polytope and
its extreme points. Latin squares represent the extreme points that are global
maximizers of the distance from the barycenter, so we characterize the non-
Latin extreme points as being short. The current paper initiates the geometric
study by focusing on the Latin polytope Λ3, correlating its short extreme points
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with certain pairs of mutually orthogonal Latin squares (MOLS) as summarized
in Figure 1. A standard concept from the theory of Latin squares, the notion of
an intercalate within a single Latin square, is adapted to create what are known
as cross-intercalates of pairs of Latin squares. In our geometry, pairs of MOLS
of degree 3 split into two classes that are described as parallel and reversed.
The cross-intercalates split into two classes, row and column cross-intercalates.
Each short extreme point of Λ3 is then obtained by a row cross-intercalate
change from two parallel pairs of MOLS, and by a column cross-intercalate
change from two reversed pairs of MOLS.

18 parallel

pairs of MOLS

54 short

extreme points

   
   

   
   

   

``````````````̀

2

2

6

6

Column cross-intercalate change

�
�
��

Row cross-intercalate change

C
C
CW

18 reversed

pairs of MOLS

Figure 1. Geometry of short extreme points and mutually
orthogonal Latin squares in degree 3.

The plan of the paper is as follows. Section 2 reviews background material,
including the isotopy group that acts on a Latin polytope (§2.3), along with the
Jurkat/Ryser criterion for extremality of a tristochastic tensor (Theorem 2.2).
It deals with the metric geometry of spaces of tensors, contrasted with the
projective geometry introduced in [7] and further studied in [8]. The parallel
and reversed classes of degree 3 MOLS are presented in Section 3. In particular,
it is shown that each of these classes forms an orbit under the action of the
isotopy group on Λ3 (Theorem 3.2). The cross-intercalates are introduced in
Section 4. Working with the Jurkat/Ryser extremality condition, Section 5
shows how to construct one short extreme point of Λ3 by making a cross-
intercalate change in a pair of MOLS. Section 6 then shows how to obtain the
full set of short extreme points by exploiting the action of the isotopy group.
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The final Section 7 investigates the reverse of the process exhibited in Section 5,
showing how each short extreme point determines two parallel pairs and two
reversed pairs of MOLS via appropriate cross-intercalate changes (Theorem 7.3,
Figure 1).

Readers are referred to [16] and [17, Ch. 11] for aspects of quasigroup and
Latin square theory that are not otherwise explained explicitly in the paper.

2. Background

2.1. Metric spaces of tensors

2.1.1. Stochastic vectors. The set

Πn =

{
(p1, . . . , pn)

∣∣∣∣∀ 1 ≤ i ≤ n , pi ∈ [0, 1] and

n∑
i=1

pi = 1

}
is the set of probability distributions that are available on an n-element set.
Topologically, it forms an (n−1)-dimensional simplex ∆n−1. Here, the vertices
or extreme points are the “crisp” probability distributions where each weight
pi lies in the set {0, 1}, not just the closed interval [0, 1]. Considering the
elements of Πn supported on a specific n-element set A = { a1, . . . , an }, it is
often convenient to identify the symbol ai with the crisp distribution having
pi = 1, for 1 ≤ i ≤ n.

As a subset of Euclidean space Rn, the set Πn inherits the Euclidean metric
given by the squared norm ||x||2 = xx∗, where x∗ denotes the (conjugate)
transpose of the (1×n)-matrix x. Elements p = (p1, . . . , pn) of Πn are described
as stochastic vectors.

The barycenter of the simplex Πn is the uniform distribution( 1

n
, . . . ,

1

n

)
.

The crisp distributions are global maximizers, over Πn, of the distance from
the barycenter, yielding√(

1− 1

n

)2

+ (n− 1)
1

n2
=

√
n− 1

n

as the maximum distance.

2.1.2. Bistochastic matrices. An n × n matrix T = [tij ]1≤i,j≤n is said to be
bistochastic if each row and each (transposed) column is a stochastic vector.
The set Ωn of all bistochastic matrices of degree n is described as the Birkhoff

polytope. As a subset of Euclidean space Rn2

, the set Ωn inherits the Euclidean
metric given by the squared norm ||T ||2 = tr(TT ∗), where T ∗ denotes the
(conjugate) transpose of the (n× n)-matrix T .
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The bistochastic matrices T = [tij ]1≤i,j≤n are specified uniquely by arbitrary
(n− 1)× (n− 1) arrays [tij ]1≤i,j≤n−1 of non-negative real numbers such that

n−1∑
k=1

tik ≤ 1 and

n−1∑
k=1

tkj ≤ 1

for 1 ≤ i, j ≤ n−1. Thus Ωn forms an (n−1)2-dimensional polytope. Birkhoff
gave a succinct proof [1] that the vertices or extreme points of Ωn are precisely
the permutation matrices of degree n, namely the bistochastic matrices whose
entries lie in the set {0, 1}, not just the closed interval [0, 1].

The barycenter of the polytope Ωn is the matrix 1
nJn, where Jn is the n×n

all-ones matrix. The permutation matrices are global maximizers, over Ωn, of
the distance from the barycenter, yielding√

n
(

1− 1

n

)2

+ (n2 − n)
1

n2
=
√
n− 1

as the maximum value.

2.1.3. Tristochastic tensors. A (real) 3-tensor of degree n is a three-dimen-
sional array T = [tijk]1≤i,j,k≤n of real numbers. We write such a 3-tensor as a
stack

(2.1) T = (T1, . . . , Tn)

or ordered list of (n× n)-matrices

T1 = [T1jk]1≤j,k≤n, . . . , Tn = [Tnjk]1≤j,k≤n

known as the layers of the stack. The 3-tensors of degree n lie in Euclidean

space Rn3

. Thus the squared norm of the stack (2.1) is given by

||T ||2 =

n∑
i=1

||Ti||2 =

n∑
i=1

tr(TiT
∗
i )

in terms of the matrix norms of its layers. A tristochastic tensor is a real
3-tensor (2.1) whose layers are all bistochastic, with

∑n
i=1 Ti = Jn.

2.2. The Latin polytope

2.2.1. Approximate Latin squares. In analogy with Πn and Ωn, the set of
tristochastic tensors of degree n forms a polytope Λn, described as the Latin
polytope. Elements of Λn are interpreted as (weak) approximate Latin squares
[11, Defn. 3.4]. A tristochastic tensor T = [tijk]1≤i,j,k≤n with tijk ∈ {0, 1} for
all 1 ≤ i, j, k ≤ n corresponds to a Latin square written as a formal linear
combination

∑n
i=1 aiTi of the layers Ti, with symbols from the alphabet A.

In general, each tristochastic tensor T = [tijk]1≤i,j,k≤n is identified with an
approximate Latin square

∑n
i=1 aiTi comprising symbols from the alphabet A,

as illustrated by (5.2) below, for example, on the alphabet {a, b, c}.
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2.2.2. Latin squares as global extreme points. The barycenter of the Latin
polytope Λn is the uniform approximate Latin square UL(n) = 1

n (Jn, . . . , Jn)
[7, Defn. 2.8]. The distance of a Latin square from the barycenter is√

n2
(

1− 1

n

)2

+ (n3 − n2)
1

n2
=
√
n(n− 1) .

It was shown inductively in [9, pp. 200–201], and more directly in [3, Lemma
3.2], [11, Theorem 3.13], that Latin squares of degree n are extreme points of
the Latin polytope Λn. They are global maximizers, over Λn, of the distance
from the barycenter.
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Figure 2. Short and long extreme points.

2.2.3. Short extreme points. In the polytopes Πn and Ωn, every extreme point
is at maximal distance from the barycenter. This is no longer the case for the
Latin polytope Λn if n > 2. The computer search reported in [4, p. 184] showed
that in addition to the Latin squares, the Latin polytope Λ3 of degree 3 has
extreme points like(

1
2

1
2 0

0 0 1
1
2

1
2 0

 ,
0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

 ,


1
2 0 1

2
1
2

1
2 0

0 1
2

1
2

) ,
lying at a distance of √

1× 4

9
+ 16× 1

36
+ 10× 1

9
=
√

2

from the barycenter UL(3). Extreme points of this type, which are not global
maximizers of the distance from the barycenter, are described as being short.1

Figure 2 may help a reader appreciate the difference between the long and short
extreme points of Λ3, where the Latin squares lie at a distance of

√
6 from the

barycenter UL(3).

1The term “exotic” was used in [11, Defn. 3.14(a)].
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2.3. Isotopy group action

2.3.1. Symmetries of the Birkhoff polytope. Consider a quasigroup Q. Its
(combinatorial) multiplication group is the subgroup

MltQ = 〈L(q), R(q) | q ∈ Q〉Q!

of the group Q! of bijections from Q to Q generated by all left multiplications
L(q) : Q → Q;x 7→ qx and right multiplications R(q) : Q → Q;x 7→ xq with
elements q of Q. Its subgroups

LMltQ = 〈L(q) | q ∈ Q〉Q! and RMltQ = 〈R(q) | q ∈ Q〉Q!

are respectively known as the left and right multiplication groups of Q.
If Q is a group, considered as a quasigroup, its multiplication group MltQ

is given by the exact sequence

{1} −→ Z(Q)
∆−→ Q×Q T−→ MltQ −→ {1}

of groups with ∆ : z 7→ (z, z) and T : (x, y) 7→ L(x)−1R(y) [16, Ex. 2.1]. The
symmetric group Sn is abelian for n ≤ 2, so MltSn ∼= Sn. For n > 2, one has
Z(Sn) = {1} and MltSn ∼= Sn × Sn.

The natural action of the combinatorial multiplication group MltSn on (the
permutation matrices that faithfully represent) Sn yields an isometric action
of MltSn on the Birkhoff polytope Ωn. Here, the left multiplications permute
matrix rows, while the right multiplications permute matrix columns. These
two actions commute mutually, in accord with the associativity of Sn.

2.3.2. Isotopy of the Latin polytope. Let T = (T1, . . . , Tn) be a tristochastic
tensor of degree n, and let α be an element of MltSn. Then the diagonal
extension of the multiplication group action on Ωn from §2.3.1 yields an action

α : (T1, . . . , Tn) 7→ (Tα1 , . . . , T
α
n )

of α on T . In other words, the isometric action of MltSn on Ωn extends
diagonally to an isometric action of MltSn on Λn.

An additional action of Sn on Λn is furnished by the permutations of the
layers of each stack. The group generated by the diagonal action of MltSn on
Λn, together with the layer permutations, is called the isotopy group of Λn. It
acts isometrically. We identify the following subgroups of the isotopy group:

• The row subgroup corresponding to the left multiplication group of Sn;
• The column subgroup corresponding to the right multiplication group

of Sn;
• The multiplication subgroup, the join of the row and column subgroups;
• The symbol subgroup corresponding to the layer permutations.

These subgroups act in the expected way to yield isotopies of weak approximate
Latin squares. The row subgroup permutes rows, while the column subgroup
permutes columns, and then the symbol subgroup permutes symbols.
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2.4. The Jurkat/Ryser extremality condition

In this section, we recall the general necessary and sufficient condition [9,
Th. 3.3] given by Jurkat and Ryser for extremality of a tristochastic tensor.
(Other conditions that are more limited in scope were presented in [3, §3.2], on
the basis of a concept of permanent for 3-tensors.)

2.4.1. The lines of a stack. Consider a tristochastic tensor or stack

T = (T1, . . . , Tn) = [tijk]1≤i,j,k≤n

of degree n. The rows of the stack are the rows

(2.2) ij∗ := {tij1, . . . , tijn}

of the matrices forming the layers of the stack, for 1 ≤ i, j ≤ n. The columns
of the stack are the columns

(2.3) i∗k := {ti1k, . . . , tink}

of the matrices forming the layers of the stack, for 1 ≤ i, k ≤ n. The piles of
the stack are the sets

(2.4) ∗jk := {t1jk, . . . , tnjk}

of corresponding matrix entries, for 1 ≤ j, k ≤ n. Together, the sets (2.2)–(2.4)
are described as the lines of the stack.

2.4.2. The incidence matrix of a stack. Let

T = (T1, . . . , Tn) = [tijk]1≤i,j,k≤n

be a tristochastic tensor or stack. Its incidence matrix has rows indexed by
the lines of the stack, and columns indexed by the non-zero entries tijk of the
stack. The incidence matrix column indexed by a non-zero entry tijk has an
entry of 1 for each of the three lines (namely ij∗, i∗k, and ∗jk) containing tijk.

Example 2.1. The body of Table 1 displays the incidence matrix of the stack
(5.5).

2.4.3. Jurkat/Ryser relations.

Theorem 2.2 ([9, Th. 3.3]). A tristochastic tensor of degree n is an extreme
point of the Latin polytope Λn if and only if the columns of its incidence matrix
are linearly independent.

For a tristochastic tensor that is not extremal, non-trivial relations holding
between the columns of its incidence matrix will be described as Jurkat/Ryser
relations.
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3. Pairs of mutually orthogonal Latin squares

3.1. Parallel and reversed classes

This section concerns itself with the case of degree 3, which will be the main
focus of the paper. It will occasionally be convenient to have the abbreviated
notation

(1) = r1 , (1 2 3) = r2 , (1 3 2) = r3 , (1 2) = s1 , (2 3) = s2 , (3 1) = s3

for the elements of S3 acting naturally on {1, 2, 3}, and to impose the two
lexicographic orders

(1) < (1 2 3) < (1 3 2) , (1 2) < (2 3) < (3 1)

or
r1 < r2 < r3 and s1 < s2 < s3 ,

extending to the cyclic orderings

(3.1) r1 < r2 < r3 < r1 < r2 and s1 < s2 < s3 < s1 < s2 .

Identifying permutations as usual here with their permutation matrices, the
pairs of MOLS of degree 3 comprise an element of each of the symbol subgroup
orbits of the two stacks (r1, r2, r3) and (s1, s2, s3). Thus altogether, there are
6 × 6 = 36 unordered pairs of MOLS. They fall into two classes, defined as
follows.

Definition 3.1. Suppose that {(p1, p2, p3), (q1, q2, q3)} is a pair of MOLS of
degree 3, with {p1, p2, p3} = A3 and {q1, q2, q3} = S3 rA3.

(a) The pair is parallel if the respective stacks are (p1 < p2 < p3) and
(q1 < q2 < q3) or (p1 > p2 > p3) and (q1 > q2 > q3) under the cyclic
orderings of (3.1).

(b) The pair is reversed if the respective stacks are (p1 < p2 < p3) and
(q1 > q2 > q3) or (p1 > p2 > p3) and (q1 < q2 < q3) under the cyclic
orderings of (3.1).

3.2. Isotopy action on pairs of MOLS

We now show that the classes introduced in Definition 3.1 form orbits under
the isotopy group. In preparation, we note the two Cayley diagrams

(3.2) s2 r1 s1

r2 s3 r3

and

s2
___ ___

�
�
� r1

___ s1

�
�
�

�
�
�

r3
___ ___ s3

___ r2

of S3 with respect to its generating set {s1, s2}. Solid edges are used to denote
right multiplications, while dashed edges are used to denote left multiplications,
singly for s1 and doubly for s2.

Theorem 3.2. The unordered pairs of MOLS form two orbits under the action
of the isotopy group: the class of parallel pairs, and the class of reversed pairs.
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Proof. The symbol subgroup preserves the two classes. The Cayley diagram

r1r2r3, s1s2s3

�
�
�

�
�
� s2s3s1, r3r1r2

�
�
�

�
�
� r2r3r1, s3s1s2

�
�
�

�
�
�

s2s1s3, r2r1r3

�
�
� r1r3r2, s3s2s1

�
�
� s1s3s2, r3r2r1

�
�
�

r3r1r2, s3s1s2

�
�
�

�
�
� s1s2s3, r2r3r1

�
�
�

�
�
� r1r2r3, s2s3s1

�
�
�

�
�
�

s3s2s1, r3r2r1

�
�
� r2r1r3, s1s3s2

�
�
� s2s1s3, r1r3r2

�
�
�

r2r3r1, s2s3s1

�
�
�

�
�
� s3s1s2, r1r2r3

�
�
�

�
�
� r3r1r2, s1s2s3

�
�
�

�
�
�

s1s3s2, r1r3r2 r3r2r1, s2s1s3 s3s2s1, r2r1r3

of the multiplication subgroup action with respect to its generating set

{L(s1), L(s2), R(s1), R(s2)}

then shows that the parallel class forms an orbit. Here, the conventions of
(3.2) are used for the generators, and the missing actions of R(s1) and R(s2),
for example R(s1) at the vertex r1r2r3, s1s2s3, are trivial. Furthermore, the
actions of L(s1) and L(s2) on the vertices in the top and bottom rows are
not shown, since they are implicit from the braid relation L(s1)L(s2)L(s1) =
L(s2)L(s1)L(s2). In the diagram, a vertex label p1p2p3, q1q2q3 denotes the
unordered pair {(p1, p2, p3), (q1, q2, q3)} of stacks. A similar procedure shows
that the reversed class forms an orbit. �

4. Intercalates and cross-intercalates

4.1. Intercalates and intercalate changes

An intercalate2 in a Latin square T = (T1, . . . , Tn) =
∑n
i=1 aiTi is defined

by indices

1 ≤ i1 6= i2 , j1 6= j2 , k1 6= k2 ≤ n

2Compare [5], [6], [13]; the term was introduced in [14].
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ai2

ai1

ai1

ai2j1

j2

k1 k2

Figure 3. An intercalate in a Latin square.

such that ti1,j1,k1 = ti1,j2,k2 = ti2,j1,k2 = ti2,j2,k1 = 1 (Figure 3). An intercalate
change is a transformation of Latin squares of the form

ai1 ai2

ai2 ai1

 7→


ai2 ai1

ai1 ai2


where unmarked terms are not changed.

4.2. Cross-intercalates and cross-intercalate changes

Definition 4.1. Suppose that T (1) =
(
T

(1)
1 , . . . , T

(1)
n

)
=
∑n
i=1 aiT

(1)
i and

T (2) =
(
T

(2)
1 , . . . , T

(2)
n

)
=
∑n
i=1 biT

(2)
i are Latin squares, with

T
(1)
i = [t

(1)
ijk]1≤j,k≤n and T

(2)
i = [t

(2)
ijk]1≤j,k≤n

for 1 ≤ i ≤ n. Then a cross-intercalate between T (1) and T (2), or a cross-
intercalate in the weak approximate Latin square 1

2T
(1) + 1

2T
(2), is defined by

indices
1 ≤ i1 6= i2 , j1 6= j2 , k1 6= k2 ≤ n

such that t
(1)
i1,j1,k1

= t
(1)
i1,j2,k2

= t
(2)
i2,j1,k2

= t
(2)
i2,j2,k1

= 1 (Figure 4).

Lemma 4.2. Under the action of the isotopy group, cross-intercalates are
mapped to cross-intercalates.
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? + 1
2bi2

1
2ai1+ ?

1
2ai1+ ?

? + 1
2bi2j1

j2

k1 k2

Figure 4. A cross-intercalate in an approximate Latin square.

A cross-intercalate change will now be defined as a transformation of weak
approximate Latin squares of the form

1
2ai1+ ? ? + 1

2bi2

? + 1
2bi2

1
2ai1+ ?

 7→


1
2bi2+ ? ? + 1

2ai1

? + 1
2ai1

1
2bi2+ ?


where unmarked terms, or terms marked by ?, are not changed. Note that,
starting from an approximate Latin square, the result is again an approximate
Latin square: all the row, column, and pile sums are 1. Summarizing, to
contrast with the situation considered in the following section, cross-intercalate
changes are always possible when a cross-intercalate is given.

4.3. Column and row cross-intercalate changes

Suppose that we have a cross-intercalate in the weak approximate Latin
square 1

2T
(1) + 1

2T
(2), as in Definition 4.1. As observed in the previous section,

a cross-intercalate change may be performed to obtain a new approximate Latin
square. In this section, rather than obtaining a single weak approximate Latin
square as the result of the cross-intercalate change, we consider the possibility,
not always feasible, of obtaining a pair of genuine Latin squares from the cross-
intercalate change. More precisely, new squares S(1) and S(2) may potentially
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be created from the squares T (1) and T (2) by interchanging the entries ai1 and
bi2 at the four cross-intercalate points indicated in Figure 4.

For this question, it is necessary to distinguish two different kinds of cross-
intercalate changes, namely row cross-intercalate changes as indicated by

1
2ai1+ ? ? + 1

2bi2

? + 1
2bi2

1
2ai1+ ?


↙ ↘

bi2 ai1


 ai1 bi2


or column cross-intercalate changes as indicated by

1
2ai1+ ? ? + 1

2bi2

? + 1
2bi2

1
2ai1+ ?


↙ ↘

bi2

ai1




ai1

bi2

 .
In each case, the potential squares S(1) and S(2) are represented on the left
and right hand sides of the display respectively. Various examples of this type
appear in the proof of Theorem 7.3. In some cases, the squares S(1) and S(2)

exist, while in other cases, they do not.

5. Construction of a short extreme point

5.1. Means of orthogonal Latin squares

Consider the respective tristochastic tensors

T (1) =

(0 1 0
0 0 1
1 0 0

 ,
1 0 0

0 1 0
0 0 1

 ,
0 0 1

1 0 0
0 1 0

)
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and

T (2) =

(1 0 0
0 0 1
0 1 0

 ,
0 0 1

0 1 0
1 0 0

 ,
0 1 0

1 0 0
0 0 1

) ,
together representing a reversed pairb a c

c b a
a c b

 and

a c b
c b a
b a c

(5.1)

of mutually orthogonal Latin squares. The tristochastic tensor

1

2
T (1) +

1

2
T (2)

represents the approximate Latin square

(5.2)


1
2b+ 1

2a
1
2a+ 1

2c
1
2c+ 1

2b
1
2c+ 1

2c
1
2b+ 1

2b
1
2a+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2a
1
2b+ 1

2c


which contains the cross-intercalate

(5.3)


1
2 b + 1

2a
1
2a+ 1

2 c
1
2c+ 1

2b
1
2 c + 1

2c
1
2b+ 1

2 b
1
2a+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2a
1
2b+ 1

2c


identified by the boxed entries.

5.2. The Jurkat/Ryser relation of the mean

The mean of the tristochastic tensors T (1) and T (2) is

1

2
T (1) +

1

2
T (2) =

( 1
2

1
2 0

0 0 1
1
2

1
2 0

 ,
 1

2 0 1
2

0 1 0
1
2 0 1

2

 ,
0 1

2
1
2

1 0 0
0 1

2
1
2

) .(5.4)

Its non-zero entries may be identified as follows:(v1 v2 0
0 0 v3

v4 v5 0

 ,
v6 0 v7

0 v8 0
v9 0 v10

 ,
 0 v11 v12

v13 0 0
0 v14 v15

) .(5.5)

The locations of the non-zero entries v1, . . . , v15 on the respective lines 11∗,
12∗, . . . , ∗33 of the 3-tensor are presented in Table 1. Identifying the entries
with their 27-dimensional column vectors from the table, it is seen that the
Jurkat/Ryser relation

(5.6) (v1 − v4 + v5 − v2)− (v6 − v9 + v10 − v7) + (v11 − v14 + v15 − v12) = 0

holds, witnessing that the mean 1
2T

(1) + 1
2T

(2) is not an extreme point of Λ3.
In fact, the span of the vectors v1, . . . , v15 has dimension 14, so up to scalar
multiples, (5.6) is the only relation holding.
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Table 1. Line incidence with non-zero entries in the mean.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

11∗ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
12∗ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
13∗ 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
21∗ 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
22∗ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
23∗ 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
31∗ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
32∗ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
33∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1∗1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1∗1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1∗1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2∗1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
2∗2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2∗3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
3∗1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3∗2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
3∗3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

∗11 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
∗12 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
∗13 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
∗21 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
∗22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
∗23 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
∗31 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
∗32 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
∗33 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

It is convenient to display the relation (5.6) by the directed graph

(5.7) v1 v2
oo

��

v6
//

��

v7 v11 v12
oo

��
v4

//

OO

v5 v9 v10
oo

OO

v14
//

OO

v15

where vertices with in-degree two appear in (5.6) with a positive sign, while
vertices with out-degree two appear in (5.6) with a negative sign.

5.3. The cross-intercalate change

In order to obtain an extreme point of the Latin polytope Λ3 from the mean
(5.4) of the orthogonal Latin squares, the relation (5.6) must be broken, in
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such a way that no new Jurkat/Ryser relations are introduced in the process.
The symbol interchange b ↔ c in the boxes of the cross-intercalate (5.3) will
destroy the two rightmost cycles appearing in the undirected reduct of the
directed graph (5.7), essentially by removal of the vertices v6 and v11 from the
picture.

Interchange of the symbols b and c in the boxes of the cross-intercalate of
(5.3) yields the approximate Latin square

1
2 c + 1

2a
1
2a+ 1

2 b
1
2c+ 1

2b
1
2 b + 1

2c
1
2b+ 1

2 c
1
2a+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2a
1
2b+ 1

2c


with tristochastic tensor(

1
2

1
2 0

0 0 1
1
2

1
2 0

 ,
0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

 ,


1
2 0 1

2
1
2

1
2 0

0 1
2

1
2

) .(5.8)

Its non-zero entries may be identified as(u1 u2 0
0 0 u3

u4 u5 0

 ,
 0 u6 u7

u8 u′8 0
u9 0 u10

 ,
u11 0 u12

u13 u′13 0
0 u14 u15

)

to contrast with the previous arrangement(v1 v2 0
0 0 v3

v4 v5 0

 ,
v6 0 v7

0 v8 0
v9 0 v10

 ,
 0 v11 v12

v13 0 0
0 v14 v15

)

from (5.5). The cross-intercalate change acts as

vi 7→

{
ui, u

′
i for i ∈ {8, 13};

ui otherwise

on the entries of (5.5). The cycle elements v6, v11 from (5.7), respectively
incident with the columns 2∗1 and 3∗2, are transformed to u6, u11, which
are respectively incident with the columns 2∗2 and 3∗1. As such, they no
longer form cycles of the type displayed in (5.7), and thus the Jurkat/Ryser
relation (5.6) is broken. An analysis of the analogue of Table 1 for the vectors
u1, . . . , u8, u

′
8, . . . , u13, u

′
13, . . . , u15 shows no Jurkat/Ryser relations appearing.

Thus by Theorem 2.2, (5.8) is a short extreme point of Λ3, located at a distance
of

√
2 =

√
1× 16

36
+ 16× 1

36
+ 10× 4

36

from the barycenter ( 1
3J3,

1
3J3,

1
3J3) of the polytope.
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6. Short extreme points

Following the construction of the single short extreme point (5.8) that was
presented in the previous section, the isometric action of the isotopy group on
the Latin polytope generates further short extreme points.

Lemma 6.1. The orbit of (5.8) under the action of the isotopy group has 54
elements.

Proof. Consider the tristochastic tensor (5.8):

(
1
2

1
2 0

0 0 1
1
2

1
2 0

 ,
0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

 ,


1
2 0 1

2
1
2

1
2 0

0 1
2

1
2

) .
Consider the ordered pair obtained by deleting the first layer. The invertible
transformation

θ : 0 7→ 1 ,
1

2
7→ 0

of entries, applied to the second and third layers, produces the ordered pair(1 0 0
0 0 1
0 1 0

 ,
0 1 0

0 0 1
1 0 0

)

of permutation matrices. The second matrix corresponds to an element of A3,
while the first corresponds to an element of the coset S3rA3. Given the second
and third layers, the first layer of (5.8) is uniquely determined by the condition
that the sum of the three layers is J3.

Now consider an arbitrary element T ′ of the orbit of (5.8) under the isotopy
group. Within the orbit of T ′ under the symbol subgroup, there is a unique
tensor T such that the inverse image under θ of the second layer lies in A3, and
the inverse image under θ of the third layer lies in S3 rA3. Overall, there are
|A3| × |S3 r A3| = 9 such tensors T , each of which generates an orbit of size
6 under the symbol subgroup. Thus the full orbit of (5.8) under the isotopy
group contains 9× 6 = 54 elements. �

The following result was presented in [4, p. 184] and later papers as the
outcome of a computer search. Bóna’s work [2] implies an analytical verification
that there are 54 short extreme points. Now, making use of the Latin square
concepts of orthogonality and cross-intercalate, we have obtained an analytical
determination of these extreme points:

Theorem 6.2. The 54 tensors in the orbit of (5.8) under the action of the
isotopy group constitute the full set of non-Latin extreme points of the Latin
polytope Λ3.
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7. Inverse cross-intercalate changes

Section 5 employed a certain column cross-intercalate change in a reversed
pair of mutually orthogonal Latin squares in order to construct a particular
short extreme point of Λ3. We now bring the inverse process into play, and
associate cross-intercalates between a pair of mutually orthogonal Latin squares
to a given short extreme point. We refer to a pair of mutually orthogonal Latin
squares (MOLS) with an identified cross-intercalate as a MOLS/C-I.

Lemma 7.1. Consider a pair of mutually orthogonal Latin squares.

(a) There are 6 cross-intercalates in the pair of MOLS: column cross-
intercalates in a reversed pair, and row cross-intercalates in a parallel
pair.

(b) Of these 6 cross-intercalates in each pair of MOLS, two involve any
given 2-element subset of the symbol set.

Proof. By Theorem 3.2, the reversed pairs of MOLS form one orbit under the
isotopy group, while the parallel pairs form another. It will suffice to examine
a particular example, say the reversed pair (5.1). For compactness, this pair
will be represented as ba ac cb

cc bb aa
ab ca bc

 .
Six column intercalate pairs may then be presented asb)a a(c cb

c)c b(b aa
ab ca bc

  ba ac cb
c(c b)b aa
a(b c)a bc

 b(a ac c)b
c(c bb a)a
ab ca bc

(7.1)

 ba ac cb
c)c bb a(a
a)b ca b(c

 ba a)c c(b
cc b)b a(a
ab ca bc

 ba ac cb
cc b(b a)a
ab c(a b)c


using a convention whereby the top left matrix in the array represents the
column cross-intercalate of (5.3). Similarly, six row intercalate pairs may be
found in any parallel pair of MOLS. �

Corollary 7.2. There are 2× 6× 3× 6 = 216 MOLS/C-I structures.

A comparison of Corollary 7.2 with Theorem 6.2 shows that 216 MOLS/C-I
structures are to be associated with 54 short extreme points. The following
result shows that the association is regular.

Theorem 7.3. Each short extreme point of Λ3 is obtained by a cross-intercalate
change from precisely four MOLS/C-I structures, namely two column cross-
intercalate changes in reversed pairs of MOLS, and two row cross-intercalate
changes in parallel pairs of MOLS.
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Proof. Because the isotopy group acts transitively on the set of short extreme
points, it suffices to consider the single short extreme point (5.8), represented
by the approximate Latin square

(7.2)


1
2c+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2b
1
2b+ 1

2c
1
2b+ 1

2c
1
2a+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2a
1
2b+ 1

2c

 .
Since only the symbol a appears (in the second row) with a coefficient of 1,
it cannot feature in a cross-intercalate change. Thus only cross-intercalate
changes involving the symbols b and c need be considered. There are five
such potential cross-intercalates in (7.2), each to be examined separately. We
present the first case here, and defer the remaining four cases to the Appendix
for the benefit of readers who would like to see the specific details of each case.

Case I: 
1
2 c + 1

2a
1
2a+ 1

2 b
1
2c+ 1

2b
1
2 b + 1

2c
1
2b+ 1

2 c
1
2a+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2a
1
2b+ 1

2c

 .
This was the original cross-intercalate used to create the short extreme point
(5.8). It came from a column cross-intercalate change using the MOLS/C-I
indicated compactly as b)a a(c cb

c)c b(b aa
ab ca bc


employing the notation taken from the proof of Lemma 7.1. On the other
hand, an attempt to implement a row cross-intercalate change would lead to
the configuration b c

a

 ,
c b a


of partial Latin squares to be completed, a task which fails at the top right-hand
corner of the first square. �

Lemma 7.1 and Theorem 7.3 are illustrated by Figure 1.

8. Conclusion and future work

We have determined the geometry of the short extreme points of the Latin
polytope Λ3, showing how they are obtained by cross-intercalate changes to the
means of pairs of mutually orthogonal Latin squares. An immediate next step
in the current program is to conduct a comparable geometric examination of the
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extreme points of Λ4, representatives for which are listed without provenance
in the appendix of [10].

In particular, the key question is the extent to which the Latin squares alone
continue to govern the shorter extreme points, in ways that are comparable to
the geometry observed in Λ3. Of course, the absence of mutually orthogonal
pairs of Latin squares in degree 6, and possibly also the asymptotics of (1.2),
point to a greater diversity of construction methods than that needed for degree
3. Nevertheless, each effective method should imply higher-level relationships
between Latin squares, like the parallel and reversed classes that are introduced
in Section 3 of the current paper. Relational structure of this type could provide
additional tools to tackle difficult questions, such as the possible number of
MOLS of a given degree.

Appendix

This Appendix presents the remaining cases for the proof of Theorem 7.3.

Case II: 
1
2c+ 1

2a
1
2a+ 1

2b
1
2c+ 1

2b
1
2b+ 1

2 c
1
2 b + 1

2c
1
2a+ 1

2a
1
2a+ 1

2 b
1
2 c + 1

2a
1
2b+ 1

2c

 .
This column cross-intercalate derives from the reversed MOLS/C-I written as ac ba cb

b)b c(c aa
c)a a(b bc


in the notation of the proof of Lemma 7.1. An attempt to implement a row
cross-intercalate change would lead to the configurationb c a

 ,
 a

c b


of partial Latin squares to be completed, doomed to fail in the bottom right-
hand corner of the second square.

Case III: 
1
2c+ 1

2a
1
2a+ 1

2 b
1
2 c + 1

2b
1
2b+ 1

2c
1
2b+ 1

2c
1
2a+ 1

2a
1
2a+ 1

2b
1
2 c + 1

2a
1
2 b + 1

2c

 .
This row cross-intercalate derives from the MOLS/C-I written asac c)a b)b

cb bc aa
ba a(b c(c


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in the notation of the proof of Lemma 7.1. An attempt to implement a column
cross-intercalate change would lead to the configuration c

a

b

 ,
 b

a

c


of partial Latin squares to be completed, failing at the middle entry of the first
square.

Case IV: 
1
2 c + 1

2a
1
2a+ 1

2b
1
2c+ 1

2 b
1
2b+ 1

2c
1
2b+ 1

2c
1
2a+ 1

2a
1
2a+ 1

2 b
1
2c+ 1

2a
1
2b+ 1

2 c

 .
This (row) cross-intercalate derives from the MOLS/C-I written asb)a ab c)c

cb bc aa
a(c ca b(b


in the notation of the proof of Lemma 7.1. An attempt to implement a column
cross-intercalate change would lead to the configurationb a

c

 ,
 c

a

b


of partial Latin squares to be completed, impossible for the first column of the
first square.

Case V: 
1
2 c + 1

2a
1
2a+ 1

2 b
1
2c+ 1

2b
1
2b+ 1

2c
1
2b+ 1

2c
1
2a+ 1

2a
1
2a+ 1

2 b
1
2 c + 1

2a
1
2b+ 1

2c

 .
A column cross-intercalate change would lead to the configurationb a

c

 ,
 c

a

b


of partial Latin squares to be completed, but completion is impossible in the
second row of either square. A row cross-intercalate change would lead to the
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configuration b c

a

 ,
 a

c b


of partial Latin squares to be completed, but in this case completion is impos-
sible in the third column of either square.
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