DOI QR코드

DOI QR Code

수중에서 퍼넬형 macro fiber composite 에너지 하베스터의 에너지 수확 특성

A study on the underwater energy harvesting characteristics of a funnel type macro fiber composite energy harvester

  • 이종길 (안동대학교 기계교육과) ;
  • 안진효 (안동대학교 대학원 정밀기계공학과)
  • 투고 : 2022.11.15
  • 심사 : 2022.12.12
  • 발행 : 2023.01.31

초록

본 연구에서 제안한 에너지 하베스팅 장치는 입구가 넓고 출구가 좁은 퍼넬형 에너지 하베스터(Funnel Type Energy Harvester, FTEH)에 Macro Fiber Composite(MFC)가 외팔보 형태로 장착되어 있는 구조로서 MFC의 구조를 변화 시켰을 때 FTEH에 수확하는 에너지양의 특성을 이론과 실험을 통하여 분석하였다. MFC의 길이를 50 % 증가 시켰을 때 진동 변위는 3.5배 증가하였고, 두께를 75 % 감소시 30.9배 증가하였다. 수조 실험에서 최대 전력량은 스파이럴 스크루가 장착된 상태의 유연한 지지대에 수직으로 설치된 MFC가 스파이럴 스크루가 없고 견고한 지지대에 수평으로 설치된 경우보다 약 5배 정도 높았다. FTEH에 최적저항 4,010 kΩ을 적용하여 유속 0.24 m/s일 때 FTEH의 출력을 350 s 동안 커패시터에 에너지를 저장하면 4 ㎼·s에 도달하였다. 빠른 유속으로 유연한 지지대에 수직으로 설치된 대면적 MFC의 커패시터 충전 시간을 길게 하면 충전 에너지를 증가시킬 수 있음을 확인하였다.

In this paper, it was investigated how the amount of energy harvesting will be varied from the FTEH which has inlet area is wider than outer area and attaching cantilever type MFC (Macro Fiber Composite) using by theoretical and experimental approaches. When MFC length increased 50 % vibration displacement also increased 3.5 times. When thickness decreased vibration displacement increased 30.9 times. In underwater tank experiments FTEH with spiral screw, flexible support, vertical direction fabrication cases showed maximum energy harvesting more 5 times than the case of MFC installed horizontally without spiral screws and on rigid supports. When the flow speed of 0.24 m/s FTEH's optimal resistance applied 4,10 kΩ, energy storage in the capacitor was measured 4 ㎼·s during 350 seconds. It was confirmed that the charging energy can be increased by lengthening the capacitor charging time of the large-area MFC installed vertically on the flexible support at high flow speed.

키워드

과제정보

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었음.

참고문헌

  1. J. Lee, J. Ahn, H. Jin, C. Lee, Y. Jeong, K. Lee, H. Seo, and Y. Cho, "A funnel type PVDF underwater energy harvester with spiral structure mounted on the harvester support," Micromech. 13, 579 (2022).
  2. A. Erturk and D. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, West Sussex, 2011), pp. 1-73.
  3. A. Mehmood, A. Abdelkefi, M. R. Hajj, A. Nayfeh, I. Akhtar, and A. O. Nuhait, "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder," J. Sound Vib. 332, 4656-4667 (2013). https://doi.org/10.1016/j.jsv.2013.03.033
  4. H. Dai, A. Abdelkefi, and L. Wang, "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations," J. Intell. Mater. Syst. Struct. 25, 1-14 (2014).
  5. C. Grouthier, S. Michelin, and E. de Langre, "Optimal energy harvesting by vortex-induced vibrations in cables," Proc. ASME 35th Int. Conf. OMAE, 1-9 (2016).
  6. R. Song, X. Shan, F. Lv, and T. Xie, "A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension," Ceram. Int. 41, S768-S773 (2015). https://doi.org/10.1016/j.ceramint.2015.03.262
  7. A. Erturk and G. Delporte, "Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms," Smart Mater. Struct. 20, 125013 (2011).
  8. X. Shan, R. Song, B. Liu, and T. Xie, "Novel energy harvesting: a macro fiber composite piezoelectric energy harvester in the water vortex," Ceram. Int. 41, S763-S767 (2015). https://doi.org/10.1016/j.ceramint.2015.03.219
  9. R. Blevins, Formulas for Natural Frequency and Mode Shape (Krieger Publishing Co., Malabar, 2001), pp. 108-109.
  10. K. Yoon and K. Oh, Piezoelectric Electrostrictive Actuator (Pierson Education Korea, Co., Ltd., Seoul, 2001), pp. 136-138.
  11. A. Tabesh and L. Frechette, "A low-power standalone adaptive circuit for harvesting energy from a piezoelectric micropower generator," IEEE Trans. Ind. Electron. 57, 840-849 (2009).
  12. Y. Kushino and H. Koizumi, "Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor," Proc. ECCE 2014, 2310-2315 (2014).