DOI QR코드

DOI QR Code

광학 모듈 어레이를 이용한 넓은 시야 부피의 다시점 볼 렌즈 디스플레이

Large-view-volume Multi-view Ball-lens Display using Optical Module Array

  • 이건희 (경북대학교 전자공학부) ;
  • 허대락 (경북대학교 대학원 전자전기공학부) ;
  • 박정혁 (경북대학교 전자공학부) ;
  • 정민우 (경북대학교 대학원 전자전기공학부) ;
  • 한준구 (경북대학교 전자공학부)
  • Gunhee Lee (School of Electronics Engineering Kyungpook National University) ;
  • Daerak Heo (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Jeonghyuk Park (School of Electronics Engineering Kyungpook National University) ;
  • Minwoo Jung (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Joonku Hahn (School of Electronics Engineering Kyungpook National University)
  • 투고 : 2022.12.05
  • 심사 : 2022.12.28
  • 발행 : 2023.01.30

초록

다시점 디스플레이는 관찰자의 위치에 따라 적절한 시점의 영상을 제공할 수 있어 시청자에게 입체적인 효과를 줄 수 있는 가장 실용적인 기술로 여겨진다. 하지만 대부분의 다시점 디스플레이는 평면 형태로서 시청자가 전방의 제한된 시야각 내에서만 입체 영상을 볼 수 있는 단점이 있다. 본 논문에서는 시청 영역을 360도로 확장하여 완전 시차 시차를 제공하는 구 대칭성을 가지는 볼 렌즈를 적용한 광학계로 구성된 구형 디스플레이를 제안하였다. 제안한 시스템에서 각각의 프로젝션 렌즈는 소형 모듈화하여 어레이로 구성할 수 있으며 모듈 어레이를 볼 렌즈 주위에 구면으로 배치하여 수직, 수평 시차를 제공할 수 있다. 적용된 광학 모듈을 통해 볼 렌즈 내부 중앙에 이미지가 결상되고, 사용자는 디스플레이의 시야창을 통해 선명한 영상을 시청할 수 있다. 따라서 볼 렌즈의 구면 수차를 극복하여 넓은 시야 부피를 제공하는 360도 완전 시차 디스플레이의 실현 가능성을 실험적으로 확인하였다.

A multi-view display is regarded as the most practical technology to provide a three-dimensional effect to a viewer because it can provide an appropriate viewpoint according to the observer's position. But, most multi-view displays with flat shapes have a disadvantage in that a viewer watches 3D images only within a limited front viewing angle. In this paper, we proposed a spherical display using a ball lens with spherical symmetry that provides perfect parallax by extending the viewing zone to 360 degrees. In the proposed system, each projection lens is designed to be packaged into a small modular array, and the module array is arranged in a spherical shape around a ball lens to provide vertical and horizontal parallax. Through the applied optical module, the image is formed in the center of the ball lens, and 3D contents are clearly imaged with the size of about 0.65 times the diameter of the ball lens when the viewer watches them within the viewing window. Therefore, the feasibility of a 360-degree full parallax display that overcomes the spherical aberration of a ball lens and provides a wide field of view is confirmed experimentally.

키워드

과제정보

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00914, Development of hologram printing downsizing technology based on holographic optical element (HOE)).

참고문헌

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, "Three-dimensional display technologies of recent interest: principles, status, and issues," Appl. Opt. 50 (34), H87-H115 (2011). doi: https://doi.org/10.1364/AO.50.000H87
  2. M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, "3D Display," Annu. Rev. Vis. Sci. 2, 397-435 (2016). doi: https://doi.org/10.1146/annurev-vision-082114-035800
  3. N. A. Dodgson, "Autostereoscopic 3D display," Computer. 38 (8), 31-36 (2005). doi: https://doi.org/10.1109/MC.2005.252
  4. D. McAllister, "Stereo & 3D display technologies, display technology," in Encyclopedia of Imaging Science and Technology, J.P. Hornak Ed. (Wiley, US, 2002), Vol.2, pp. 1327-1344. doi: https://doi.org/10.1002/0471443395.img093
  5. W.-X. Zhao, Q.-H. Wang, A.-H. Wang, and D.-H. Li, "Autostereoscopic display based on two-layer lenticular lenses," Opt. Lett. 35 (24), 4127-4129 (2010). doi: https://doi.org/10.1364/OL.35.004127
  6. H. Kim, J. Hahn, and H-J. Choi, "Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array," Appl. Opt. 50 (11), 1534-1540 (2011). doi: https://doi.org/10.1364/AO.50.001534
  7. H. Deng, C. Chen, M. Y. He, J. J. Li, H. L. Zhang, and Q. H. Wang, "High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element," J. Opt. Soc. Am. 36 (4), 588-593 (2019). doi: https://doi.org/10.1364/JOSAA.36.000588
  8. Y. Kim, K. Hong, and B. Lee, "Recent researches based on integral imaging display method," 3D Research, 1 (1), 17-27 (2010). doi: https://doi.org/10.1007/3DRes.01(2010)2
  9. H. Hua, B. Javidi, "A 3D integral imaging optical see-through head-mounted display," Opt. Express. 22 (11), 13484-13491 (2014). doi: https://doi.org/10.1364/OE.22.013484
  10. X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, "Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen," Appl. Opt. 49 (26), 4915-4920 (2010). doi: https://doi.org/10.1364/AO.49.004915
  11. T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, "The Seelinder: Cylindrical 3D display viewable from 360 degrees," J. Vis. Commun. Image Represent. 21 (5-6), 586-594 (2010). doi: https://doi.org/10.1016/j.jvcir.2009.10.004
  12. G. Choi, H. Jeon, H. Kim, and J. Hahn, "Horizontal-parallax-only light-field display with cylindrical symmetry," Proc. SPIE 10556, 16-21 (2018). doi: https://doi.org/10.1117/12.2287096
  13. D. Heo, S. Lim, G. Lee, G. Choi, and J. Hahn, "Full-Parallax Multiview Generation with High-Speed Wide-Angle Dual-Axis Scanning Optics," Appl. Sci. 12 (9), 4651 (2022). doi: https://doi.org/10.3390/app12094615