DOI QR코드

DOI QR Code

THE GRADIENT FLOW EQUATION OF RABINOWITZ ACTION FUNCTIONAL IN A SYMPLECTIZATION

  • Received : 2022.03.17
  • Accepted : 2022.10.27
  • Published : 2023.03.01

Abstract

Rabinowitz action functional is the Lagrange multiplier functional of the negative area functional to a constraint given by the mean value of a Hamiltonian. In this note we show that on a symplectization there is a one-to-one correspondence between gradient flow lines of Rabinowitz action functional and gradient flow lines of the restriction of the negative area functional to the constraint. In the appendix we explain the motivation behind this result. Namely that the restricted functional satisfies Chas-Sullivan additivity for concatenation of loops which the Rabinowitz action functional does in general not do.

Keywords

Acknowledgement

This work was partially supported by DFG grant FR 2637/2-2.

References

  1. A. Abbondandolo and W. J. Merry, Floer homology on the time-energy extended phase space, J. Symplectic Geom. 16 (2018), no. 2, 279-355. https://doi.org/10.4310/JSG.2018.v16.n2.a1
  2. P. Albers, K. Cieliebak, and U. Frauenfelder, Symplectic Tate homology, Proc. Lond. Math. Soc. (3) 112 (2016), no. 1, 169-205. https://doi.org/10.1112/plms/pdv065
  3. L. Bieberbach, ∆u = eu und die automorphen Funktionen, Math. Ann. 77 (1916), no. 2, 173-212. https://doi.org/10.1007/BF01456901
  4. M. Chas and D. Sullivan, String topology, arXiv:math/9911159 (1999).
  5. K. Cieliebak, A. Floer, and H. Hofer, Symplectic homology. II. A general construction, Math. Z. 218 (1995), no. 1, 103-122. https://doi.org/10.1007/BF02571891
  6. K. Cieliebak and U. A. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), no. 2, 251-316. https://doi.org/10.2140/pjm.2009.239.251
  7. K. Cieliebak, U. Frauenfelder, and A. Oancea, Rabinowitz Floer homology and symplectic homology, Ann. Sci. Ec. Norm. Super. (4) ' 43 (2010), no. 6, 957-1015. https://doi.org/10.24033/asens.2137
  8. K. Cieliebak and A. Oancea, Symplectic homology and the Eilenberg-Steenrod axioms, Algebr. Geom. Topol. 18 (2018), no. 4, 1953-2130. https://doi.org/10.2140/agt.2018.18.1953
  9. S. Dostoglou and D. A. Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. (2) 139 (1994), no. 3, 581-640. https://doi.org/10.2307/2118573
  10. Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. 2000 (2000), Special Volume, Part II, 560-673. https://doi.org/10.1007/978-3-0346-0425-3_4
  11. R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics 20 (1948), 367-387. https://doi.org/10.1103/revmodphys.20.367
  12. U. Frauenfelder, Vortices on the cylinder, Int. Math. Res. Not. 2006 (2006), Art. ID 63130, 34 pp. https://doi.org/10.1155/IMRN/2006/63130
  13. A. R. P. Gaio and D. A. Salamon, Gromov-Witten invariants of symplectic quotients and adiabatic limits, J. Symplectic Geom. 3 (2005), no. 1, 55-159. http://projecteuclid.org/euclid.jsg/1144947823 https://doi.org/10.4310/JSG.2005.v3.n1.a3
  14. N. Hingston, Loop products, Poincar'e duality, index growth and dynamics, in Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, 881-895, Kyung Moon Sa, Seoul, 2014.
  15. J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974), 14-47. https://doi.org/10.2307/1971012
  16. W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGrawHill Book Co., New York, 1973.
  17. D. A. Salamon and J. Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006), no. 5, 1050-1138. https://doi.org/10.1007/s00039-006-0577-4
  18. E. Stueckelberg, La signification du temps propre en m'ecanique ondulatoire, Helv. Phys. Acta 14 (1941), 322-323.
  19. C. Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999), no. 5, 985-1033. https://doi.org/10.1007/s000390050106