DOI QR코드

DOI QR Code

Effective problem mitigation strategy of lithium secondary battery silicon anode utilized liquid precursor

에틸벤젠을 이용한 실리콘 산화물 음극재의 효과적인 카본 코팅 전략

  • Sangryeol Lee (Department of Industrial Chemistry, Pukyong National University) ;
  • Seongsu Park (Department of Industrial Chemistry, Pukyong National University) ;
  • Sujong Chae (Department of Industrial Chemistry, Pukyong National University)
  • 이상렬 (부경대학교 공업화학전공) ;
  • 박성수 (부경대학교 공업화학전공) ;
  • 채수종 (부경대학교 공업화학전공)
  • Received : 2023.01.04
  • Accepted : 2023.01.18
  • Published : 2023.02.28

Abstract

Silicon (Si) is considered as a promising substitute for the conventional graphite due to its high theoretical specific capacity (3579 mAh/g, Li15Si4) and proper working voltage (~0.3V vs Li+/Li). However, the large volume change of Si during (de)lithiation brings about severe degradation of battery performances, rendering it difficult to be applied in the practical battery directly. As a one feasible candidate of industrial Si anode, silicon monoxide (SiOx) demonstrates great electrochemical stability with its specialized strategy, downsized Si nanocrystallites surrounded by Li+ inactive buffer phase (Li2O and Li4SiO4). Nevertheless, SiOx inherently has the initial irreversible capacity and poor electrical conductivity. To overcome those issues, conformal carbon coating has been performed on SiOx utilizing ethylbenzene as the carbon precursor of chemical vapor deposition (CVD). Through various characterizations, it is confirmed that the carbon is homogeneously coated on the surface of SiOx. Accordingly, the carbon-coated SiOx from CVD using ethylbenzene demonstrates 73% of the first cycle efficiency and great cycle life (88.1% capacity retention at 50th cycle). This work provides a promising synthetic route of the uniform and scalable carbon coating on Si anode for high-energy density.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. M. Armand, J. M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657. https://doi.org/10.1038/451652a
  2. M. Ue, K. Sakaushi, K. Uosaki, Basic knowledge in battery research bridging the gap between academia and industry, Mater. Horiz., 7 (2020) 1937-1954. https://doi.org/10.1039/d0mh00067a
  3. S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
  4. N. Kim, C. Oh, J. Kim, J. S. Kim, E. D. Jeong, J. S. Bae, T. E. Hong, J. K. Lee, High-performance Li-ion battery anodes based on silicon-graphene self-assemblies, J. Electrochem. Soc., 164 (2017) A6075-A6083. https://doi.org/10.1149/2.0101701jes
  5. M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F. M. Petrat, A new type of nanosized silicon/carbon composite electrode for reversible lithium insertion, Chem. Commun., 12 (2005) 1566-1568.
  6. X. Zhao, V. P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32 (2021) 042002.
  7. M. N. Obrovac, V. L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114 (2014) 11444-11502. https://doi.org/10.1021/cr500207g
  8. G. Li, L. B. Huang, M. Y. Yan, J. Y. Li, K. C. Jiang, Y. X. Yin, S. Xin, Q. Xu, Y. G. Guo, An integral interface with dynamically stable evolution on micron-sized SiOx particle anode, Nano Energy, 74 (2020) 104890.
  9. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, Analysis of SiOx anodes for lithium-ion batteries, J. Electrochem. Soc., 152 (2005) A2089.
  10. T. Chen, J. Wu, Q. Zhang, X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363 (2017) 126-144. https://doi.org/10.1016/j.jpowsour.2017.07.073
  11. F. Wang, G. Chen, N. Zhang, X. Liu, R. Ma, Engineering of carbon and other protective coating layers for stabilizing silicon anode materials, Carbon Energy, 1 (2019) 219-245. https://doi.org/10.1002/cey2.24
  12. T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels, 4 (2020) 5387-5416. https://doi.org/10.1039/D0SE00175A
  13. E. Sivonxay, M. Aykol, K. A. Persson, The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles, Electrochim. Acta, 331 (2020) 135344.
  14. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, Carbon-Coated Si as a Lithium-Ion Battery Anode Material, J. Electrochem. Soc., 149 (2002) A1598.
  15. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Silicon oxides: a promising family of anode materials for lithium-ion batteries, Chem. Soc. Rev., 48 (2019) 285-309. https://doi.org/10.1039/c8cs00441b
  16. Y. Zhao, Zhengjun Liu, Y. Zhang, A. Mentbayeva, X. Wang, M. Y. Maximov, B. Liu, Z. Bakenov, F. Yin, Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for Li-ion batteries, Nanoscale Res. Lett., 12 (2017) 459.
  17. K. Xiao, Q. Tang, Z. Liu, A. Hu, S. Zhang, W. Deng, X. Chen, 3D interconnected mesoporous Si/SiO2 coated with CVD derived carbon as an advanced anode material of Li-ion batteries, Ceramics International, 44 (2018) 3548-3555.
  18. D. A. Lozhkina, A. M. Rumyantsev, E. V. Astrova, Impedance spectroscopy of porous silicon and silicon-carbon anodes produced by sintering, Semicond., 54 (2020) 383-391. https://doi.org/10.1134/s1063782620030124