DOI QR코드

DOI QR Code

Cr-Mo 저합금강의 진공침탄 공정 압력 및 질소 첨가 비율에 따른 경화깊이 균일도 및 표면 특성 효과

Effect of process pressure and nitrogen addition ratio on the uniformity of hardening depth and surface properties of Cr-Mo low alloy steel in vacuum carburizing

  • 권기훈 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 박현준 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 안기원 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 이영국 (연세대학교 신소재공학과) ;
  • 문경일 (한국생산기술연구원 친환경열표면처리연구부문)
  • Gi-hoon Kwon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Hyunjun Park (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • ;
  • Young-Kook Lee (Department of Materials Science and Engineering, Yonsei University) ;
  • Kyoungil Moon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2023.01.09
  • 심사 : 2023.01.29
  • 발행 : 2023.02.28

초록

The effects of carburizing pressure and gas ratio on vacuum carburizing properties (uniformity and surface characteristics) have been studied through the analyses of carbon concentration, hardness, surface color, surface roughness and type of carbon bonding. AISI 4115 steel specimens were carburized with various pressures (1, 5, and 10 Torr) at different locations (P1, P2, P3, P4, P5, and P6) inside a furnace held at 950 ℃. Since the carburizing pressure represents the density of the carburizing gas, it plays an important role in improving the carburizing uniformity according to locations in the furnace. As the carburizing pressure increased, the carburizing uniformity according to the sample location was improved, but the surface of the carburized specimen was discolored due to the residual acetylene gas, which does not contribute to the carburizing reaction. Therefore, the carburizing uniformity and surface discoloration have been improved by injecting acetylene gas (carburizing gas) and nitrogen gas (non-reactive gas) in a specific ratio.

키워드

과제정보

본 연구는 산업통상자원부 (MOTIE)와 한국산업기술평가관리원 (KEIT)의 지원을 받아 수행한 연구입니다 (No. 20019183).

참고문헌

  1. S. Wei, G. Wang, X. Zhao, X. Zhang, Experimental study on vacuum carburizing process for low-carbon alloy steel. J. Mater. Eng. Perform., 23 (2014) 545-550. https://doi.org/10.1007/s11665-013-0762-1
  2. J. L. Dossett, G. E. Totten, Steel heat treating fundamentals and processes, ASM Handbook, 4A (2013) 581-590. https://doi.org/10.31399/asm.hb.v04a.9781627081658
  3. M. Sugiyama, K. Ishikawa, Using acetylene for superior performance vacuum carburizing, J. Jpn. Soc. Heat Treat., 37 (1998) 49-56.
  4. P. Rokicki, K. Dychton, Acetylene flow rate as a crucial parameter of vacuum carburizing process of modern tool steels, Arch. Metall. Mater., 61 (2016) 2009-2012. https://doi.org/10.1515/amm-2016-0324
  5. G. H. Kwon, K. I. Moon, Y. K. Lee, M. Jung, Carburizing behavior of AISI 4115 steel with a flow rate of acetylene and specimen location in an 1 tonclass mass production-type vacuum carburizing furnace, J. Korean Soc. Heat Treat., 34 (2021) 272-280.
  6. M. Zajusz, K. Tkacz-Smiech, M. Danielewski, Modeling of vacuum pulse carburizing of steel, Surf. Coat., 258 (2014) 646-651. https://doi.org/10.1016/j.surfcoat.2014.08.023
  7. G. H. Kwon, K. I. Moon, Y.K. Lee, M. Jung, Carburizing behavior of AISI4115 steel according to the flow rates of acetylene in vacuum carburizing, Korean J. Mater., 58 (2020) 617-625. https://doi.org/10.3365/KJMM.2020.58.9.617
  8. D. H. Herring, The influence of process variables on vacuum carburizing, Adv. Mater. Process, 146 (1995) 56-73.
  9. J. T. Mckinnon, J. B. Howard, The roles of PAH and acetylene in soot nucleation and growth, Symp. Int. Combust. Proc., 24 (1992) 965-971.
  10. D. A. Kudryavtsev, T. M. Fedotenko and E. G. Koemets, Raman spectroscopy study on chemical transformations of propane at high temperatures and high pressures, Sci. Rep., 10 (2020) 1-10. https://doi.org/10.1038/s41598-019-56847-4
  11. E. W. Korecka, M. Korecki, Calculation of the mixture flow in a low-pressure carburizing process, J. Met., 9 (2019) 439-448. https://doi.org/10.1175/1520-0469(1952)009<0439:AREOTZ>2.0.CO;2
  12. N. M. Ryzhov, A. E. Smirnov, R. S. Fakhurtdinov, Special features of vacuum carburizing of heat-resistant steel in acetylene, Met. Sci. Heat Treat., 46 (2004) 230-235. https://doi.org/10.1023/B:MSAT.0000043108.71523.08
  13. Y. Wei, Z. Zurecki, J. R. Sisson, D. Richard, Optimization of processing conditions in plasma activated nitrogen-hydrocarbon carburizing, Surf. Coat. Technol., 272 (2015) 190-197. https://doi.org/10.1016/j.surfcoat.2015.04.006
  14. T. Moskalioviene, A. Galdikas, J. P. Riviere, L. Pichont, Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding, Surf. Coat. Technol., 205 (2011) 3301-3306. https://doi.org/10.1016/j.surfcoat.2010.11.060
  15. L. R. P. Kassab, A. D.Santos, M. F. Pillis, Evaluation of carbon thin films using Raman spectroscopy, Mater. Res,. 21 (2018) 147-155. https://doi.org/10.1590/1980-5373-mr-2017-0787