DOI QR코드

DOI QR Code

Spread current spectrum method based on model predictive control with double sampling

  • Sanghun Han (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Seungil Choi (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Younghoon Cho (Department of Electrical and Electronics Engineering, Konkuk University)
  • Received : 2022.09.15
  • Accepted : 2022.10.05
  • Published : 2023.01.20

Abstract

This paper proposes a model predictive control (MPC) with a double-sampling technique to spread the current spectrum. Finite control set MPC has the characteristic of a switching frequency that fuctuates. Thus, the components of the switching frequency and harmonics are reduced in the current spectrum. When MPC is utilized to control current, virtual vectors are added to ensure a low current total harmonic distortion (THD). However, increasing the voltage vector reduces the switching frequency variation, which leads to degradation of the spread-spectrum performance. The proposed method allows MPC to have an additional feature to change the harmonic components while reducing the current THD. To verify the proposed scheme, a comparison of its performance according to the sampling techniques and number of the voltage vectors has been conducted. The simulation and experimental results demonstrate the efectiveness of the proposed method.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2021R1A5A1031868). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20206910100160).

References

  1. Gamoudi, R., Elhak Chariag, D., Sbita, L.: A review of spread-spectrumbased pwm techniques-a novel fast digital implementation. IEEE Trans. Power Electron. 33(12), 10292-10307 (2018) https://doi.org/10.1109/TPEL.2018.2808038
  2. Lezynski, P.: Random modulation in inverters with respect to electromagnetic compatibility and power quality. IEEE J Emerg. Sel. Topics. Power. Electron. 6(2), 782-790 (2018) https://doi.org/10.1109/JESTPE.2017.2787599
  3. Chen, J., Jiang, D., Sun, W., Shen, Z., Zhang, Y.: A family of spreadspectrum modulation schemes based on distribution characteristics to reduce conducted emi for power electronics converters. IEEE Trans. Ind. Appl. 56(5), 5142-5157 (2020) https://doi.org/10.1109/TIA.2020.3002472
  4. Peyghambari, A., Dastfan, A., Ahmadyfard, A.: Selective voltage noise cancellation in three-phase inverter using random SVPWM. IEEE Trans. Power Electron. 31(6), 4604-4610 (2016) https://doi.org/10.1109/TPEL.2015.2473001
  5. Xu, J., Nie, Z., Zhu, J.: Characterization and selection of probability statistical parameters in random slope PWM Based on uniform distribution. IEEE Trans. Power Electron. 36(1), 1184-1192 (2021) https://doi.org/10.1109/tpel.2020.3004725
  6. Zhang, Z., Wei, L., Yi, P., Cui, Y., Murthy, P.S., Bazzi, A.M.: Conducted emissions suppression of active front end (AFE) drive based on random switching frequency PWM. IEEE Trans. Ind. Appl. 56(6), 6598-6607 (2020) https://doi.org/10.1109/TIA.2020.3016629
  7. Binojkumar, A.C., Narayanan, G.: Variable switching frequency PWM technique for induction motor drive to spread acoustic noise spectrum with reduced current ripple. 2014 IEEE International Conf. PEDES, 1-6 (2014)
  8. Lezynski, P.: Random modulation in inverters with respect to electromagnetic compatibility and power quality. IEEE J. Emerg. Sel. Topics. Power. Electron. 6(2), 782-790 (2018) https://doi.org/10.1109/JESTPE.2017.2787599
  9. Kirlin, R.L., Lascu, C., Trzynadlowski, A.M.: Shaping the noise spectrum in power electronic converters. IEEE Trans. Ind. Electron. 58(7), 2780-2788 (2011) https://doi.org/10.1109/TIE.2010.2076417
  10. Kim, J.-H., Jung, Y.-G.: Spreading power spectrum of an induction motor drive system by chaotic pulse width modulation method. J. Electr. Eng. Technol. 16, 2685-2694 (2021) https://doi.org/10.1007/s42835-021-00818-1
  11. Huang, Y., Xu, Y., Zhang, W., Zou, J.: Hybrid RPWM technique based on modifed SVPWM to reduce the PWM acoustic noise. IEEE Trans. Power Electron. 34(6), 5667-5674 (2019) https://doi.org/10.1109/tpel.2018.2869980
  12. Li, G., Fu, Z., Wang, Y.: Electromagnetic vibration and noise suppression of induction motor based on RPWM selective spectrum shaping. IEEE Access. 9, 54509-54517 (2021) https://doi.org/10.1109/ACCESS.2021.3064848
  13. Mathe, L., Lungeanu, F., Sera, D., Rasmussen, P.O., Pedersen, J.K.: Spread spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans. Ind. Electron. 59(10), 3710-3718 (2012) https://doi.org/10.1109/TIE.2011.2179272
  14. Xu, J., Zhang, H.: Random asymmetric carrier PWM method for PMSM vibration reduction. IEEE Access. 8, 109411-109420 (2020) https://doi.org/10.1109/access.2020.3001288
  15. Moon, C.-H., Chen, C.-J., Lee, S.-W.: A random modulation spread-spectrum digital PWM for a low system clock digital buck converter. IEEE Access. 9, 156663-156671 (2021) https://doi.org/10.1109/ACCESS.2021.3126556
  16. Bu, F., Liu, Q., Pu, T., Zhao, Y., Ma, B., Ma, C., Degano, M., Gerada, C.: Analysis and performance of fve-phase piecewiserandom-switching-frequency space vector pulse width modulation. IEEE Trans. Energy Conversion. 36(3), 2339-2347 (2021) https://doi.org/10.1109/TEC.2020.3046835
  17. Jeong, W.-S., Kim, S.-H., Yi, J., Won, C.-Y.: Finite control setmodel predictive control of H8 inverter considering dead-time efect for PMSM drive systems with reduced conducted commonmode EMI and current distortions. IEEE Trans. Power Electron. 37(5), 5342-5356 (2022) https://doi.org/10.1109/TPEL.2021.3134255
  18. Kroneisl, M., Smidl, V., Peroutka, Z., Janda, M.: Predictive control of IM drive acoustic noise. IEEE Trans. Ind. Electron. 67(7), 5666-5676 (2020) https://doi.org/10.1109/tie.2019.2934087
  19. Feng, L., Yang, H., Song, W.: Acoustic noise of induction motor with low-frequency model predictive control. IEEE Access. 8, 178238-178247 (2020) https://doi.org/10.1109/access.2020.3026070
  20. Hu, J., Zhu, J., Dorrell, D.G.: Model predictive control of gridconnected inverters for PV Systems with fexible power regulation and switching frequency reduction. IEEE Trans. Ind. Appl. 51(1), 587-594 (2015) https://doi.org/10.1109/TIA.2014.2328785
  21. Yang, X., Liu, X., Zhang, Z., Garcia, C., Rodriguez, J.: Two Efective spectrum-shaped FCS-MPC approaches for three-level neutral-point-clamped power converters. IPEMC2020-ECCE Asia, 1011-1016 (2020)
  22. Cortes, P., Rodriguez, J., Quevedo, D.E., Silva, C.: Predictive current control strategy with imposed load current spectrum. IEEE Trans. Power Electron. 23(2), 612-618 (2008) https://doi.org/10.1109/TPEL.2007.915605
  23. Aguirre, M., Kouro, S., Rojas, C.A., Rodriguez, J., Leon, J.I.: Switching frequency regulation for FCS-MPC based on a period control approach. IEEE Trans. Ind. Electron. 65(7), 5764-5773 (2018) https://doi.org/10.1109/tie.2017.2777385
  24. Perez, M.A., Rodriguez, J.: Predictive frequency spectrum shaping of currents in a three phase inverter. 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics, 1-5 (2013)
  25. Bhowate, A., Aware, M.V., Sharma, S.: Quantization of current harmonic spectrum in predictive torque control. 2018 International Conf. PICC, 1-6 (2018)
  26. Lyu, J., Ma, B., Yan, H., et al.: A modifed fnite control set model predictive control for 3L-NPC Grid-connected inverters using virtual voltage vectors. J. Electr. Eng. Technol. 15, 121-133 (2020) https://doi.org/10.1007/s42835-019-00305-8
  27. Silva, J.J., Espinoza, J.R., Rohten, J.A., Pulido, E.S., Villarroel, F.A., Torres, M.A., Reyes, M.A.: MPC algorithm with reduced computational burden and fxed switching spectrum for a multilevel inverter in a photovoltaic system. IEEE Access. 8, 77405-77414 (2020) https://doi.org/10.1109/access.2020.2988627
  28. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  29. Kang, M.-J., Kim, J.-W., Han, S.-H., Cho, Y.-H., Lee, E.-S.: Modulated model predictive current control of HERIC AFE converter equipped with LCL flter. J. Power Electron. 22(1), 151-161 (2022) https://doi.org/10.1007/s43236-021-00341-6
  30. Liu, B., Wang, H., Yang, Y., Zhang, X., Guo, B.: Improved model predictive control for single-phase grid-tied inverter with virtual vectors in the compacted solution-space. IEEE Trans. Ind. Electron. 69(9), 9673-9678 (2022) https://doi.org/10.1109/TIE.2021.3114715
  31. Al-khamis, OAa., Gumus, B.: Comparison and performance analysis of model predictive control developed by transfer function based model and state space based model for brushless doubly fed induction generator. J. Electr. Eng. Technol. (2022). https://doi.org/10.1007/s42835-022-01179-z
  32. Zhong, L., Hu, S.: Model predictive control based discontinuous PWM algorithm for 3L-NPC inverter. J. Electr. Eng. Technol. 17, 425-436 (2022) https://doi.org/10.1007/s42835-021-00893-4
  33. Jing, K., Liu, C., Lin, X.: Discrete dynamical predictive control on current vector for three-phase pwm rectifer. J. Electr. Eng. Technol. 16, 267-276 (2021) https://doi.org/10.1007/s42835-020-00550-2