2차원 동역학 시뮬레이션을 활용한 부분적으로 자화된 용량성 결합 플라즈마 전산 모사

2D Kinetic Simulation of Partially Magnetized Capacitively Coupled Plasma Sources

  • 손성현 (서울대학교 에너지시스템공학부) ;
  • 박준범 (서울대학교 에너지시스템공학부) ;
  • 정경재 (서울대학교 에너지시스템공학부)
  • Sung Hyun Son (Department of Energy Systems Engineering, Seoul National University) ;
  • Junbeom Park (Department of Energy Systems Engineering, Seoul National University) ;
  • Kyoung-Jae Chung (Department of Energy Systems Engineering, Seoul National University)
  • 투고 : 2023.03.09
  • 심사 : 2023.03.16
  • 발행 : 2023.03.31

초록

Partially magnetized capacitively coupled plasma (CCP) sources are investigated using a two-dimensional kinetic simulation code named EDIPIC-2D. A converging numerical solution was obtained for CCP with a 60 MHz power source, while properly capturing the dynamics of electrons and power absorption over a single RF period. The effects of magnetic fields with different orientations were evaluated. Axial magnetic fields caused changes in the spatial distribution of plasma density, affecting the loss channel. Transverse magnetic fields enhanced stochastic heating near the powered electrode, leading to an increase in plasma density while the significant E×B drift loss compensated for this rise.

키워드

참고문헌

  1. Donnelly, Vincent M, and Avinoam Kornblit. "Plasma Etching: Yesterday, Today, and Tomorrow." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31, no. 5 (2013): 050825.
  2. Lieberman, Michael A, and Allan J Lichtenberg. Principles of Plasma Discharges and Materials Processing. Vol. 30, WILEY (1994).
  3. Chabert, Pascal, Tsanko Vaskov Tsankov, and Uwe Czarnetzki. "Foundations of Capacitive and Inductive Radio-Frequency Discharges." Plasma Sources Science and Technology 30, no. 2 (2021): 024001.
  4. Lieberman, MA, JP Booth, P Chabert, JM Rax, and MM Turner. "Standing Wave and Skin Effects in Large-Area, High-Frequency Capacitive Discharges." Plasma Sources Science and Technology 11, no. 3 (2002): 283.
  5. Chabert, Pascal. "Electromagnetic Effects in High-Frequency Capacitive Discharges Used for Plasma Processing." Journal of Physics D: Applied Physics 40, no. 3 (2007): R63.
  6. Tsankov, Tsanko V, Pascal Chabert, and Uwe Czarnetzki. "Foundations of Magnetized Radio-Frequency Discharges." Plasma Sources Science and Technology 31, no. 8 (2022): 084007.
  7. Maurmann, S, VA Kadetov, AAI Khalil, HJ Kunze, and U Czarnetzki. "Thomson Scattering in Low Temperature Helium Plasmas of a Magnetic Multipole Plasma Source." Journal of Physics D: Applied Physics 37, no. 19 (2004): 2677.
  8. Kushner, Mark J. "Modeling of Magnetically Enhanced Capacitively Coupled Plasma Sources: Ar Discharges." Journal of applied physics 94, no. 3 (2003): 1436-47. https://doi.org/10.1063/1.1587887
  9. Kim, June Young, Jae Young Jang, Jaeyoung Choi, Jong-in Wang, Won Ik Jeong, MAI Elgarhy, Geunwoo Go, Kyoung-Jae Chung, and YS Hwang. "Magnetic Confinement and Instability in Partially Magnetized Plasma." Plasma Sources Science and Technology 30, no. 2 (2021): 025011.
  10. Chen, Francis F. Introduction to Plasma Physics and Controlled Fusion. Vol. 1: Springer (1984).
  11. Taccogna, F, and Laurent Garrigues. "Latest Progress in Hall Thrusters Plasma Modelling." Reviews of Modern Plasma Physics 3 (2019): 1-63. https://doi.org/10.1007/s41614-019-0033-1
  12. Boeuf, Jean-Pierre, and Laurent Garrigues. "E× B Electron Drift Instability in Hall Thrusters: Particle-inCell Simulations Vs. Theory." Physics of Plasmas 25, no. 6 (2018): 061204.
  13. Yang, Shali, Ya Zhang, Hong-Yu Wang, Shuai Wang, and Wei Jiang. "Electrical Asymmetry Effects in Magnetized Capacitively Coupled Plasmas in Argon." Plasma Sources Science and Technology 26, no. 6 (2017): 065011.
  14. Sun, Jing-Yu, Quan-Zhi Zhang, Jia-Rui Liu, Yuan-Hong Song, and You-Nian Wang. "Electrical Asymmetry Effect in Inhomogeneously Magnetized Capacitively Coupled Plasmas." Plasma Sources Science and Technology 29, no. 11 (2020): 114002.
  15. Sharma, Sarveshwar, Igor D Kaganovich, Alexander V Khrabrov, Predhiman Kaw, and Abhijit Sen. "Spatial Symmetry Breaking in Single-Frequency Ccp Discharge with Transverse Magnetic Field." Physics of Plasmas 25, no. 8 (2018): 080704.
  16. Wang, Li, De-Qi Wen, Peter Hartmann, Zoltan Donko, Aranka Derzsi, Xi-Feng Wang, Yuan-Hong Song, YouNian Wang, and Julian Schulze. "Electron Power Absorption Dynamics in Magnetized Capacitively Coupled Radio Frequency Oxygen Discharges." Plasma Sources Science and Technology 29, no. 10 (2020): 105004.
  17. McDonald, Michael S, and Alec D Gallimore. "Rotating Spoke Instabilities in Hall Thrusters." IEEE Transactions on Plasma Science 39, no. 11 (2011): 2952-53. https://doi.org/10.1109/TPS.2011.2161343
  18. Sydorenko, D. "Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields." PhD thesis, University of Saskatchewan Saskatoon (2006).
  19. Sydorenko, D, I Kaganovich, Y Raitses, and A Smolyakov. "Breakdown of a Space Charge Limited Regime of a Sheath in a Weakly Collisional Plasma Bounded by Walls with Secondary Electron Emission." Physical review letters 103, no. 14 (2009): 145004.
  20. Carlsson, Johan, Alexander Khrabrov, Igor Kaganovich, Timothy Sommerer, and David Keating. "Validation and Benchmarking of Two Particle-in-Cell Codes for a Glow Discharge." Plasma Sources Science and Technology 26, no. 1 (2016): 014003.
  21. Sharma, Sarveshwar, Sanket Patil, Sudip Sengupta, Abhijit Sen, Alexander Khrabrov, and Igor Kaganovich. "Investigating the Effects of Electron Bounce-Cyclotron Resonance on Plasma Dynamics in Capacitive Discharges Operated in the Presence of a Weak Transverse Magnetic Field." Physics of Plasmas 29, no. 6 (2022):063501.
  22. Sun, Haomin, Jian Chen, Igor D Kaganovich, Alexander Khrabrov, and Dmytro Sydorenko. "Electron Modulational Instability in the Strong Turbulent Regime for an Electron Beam Propagating in a Background Plasma." Physical Review Letters 129, no. 12 (2022): 125001.
  23. Jin, Biemeng, Jian Chen, Alexander V Khrabrov, Zhibin Wang, and Liang Xu. "Particle-in-Cell Simulations of the Direct-Current Argon Breakdown Process in the 10-300 Kv Range." Plasma Sources Science and Technology 31, no. 11 (2022): 115015.
  24. Xu, Liang, Alexander V Khrabrov, Igor D Kaganovich, and Timothy J Sommerer. "Investigation of the Paschen Curve for Helium in the 100-1000 Kv Range." Physics of Plasmas 24, no. 9 (2017): 093511.
  25. Kaganovich, ID, VI Kolobov, and LD Tsendin. "Stochastic Electron Heating in Bounded Radio-Frequency Plasmas." Applied physics letters 69, no. 25 (1996): 3818-20. https://doi.org/10.1063/1.117115
  26. Lieberman, Michael A, Allan J Lichtenberg, and SE Savas. "Model of Magnetically Enhanced, Capacitive Rf Discharges." IEEE transactions on plasma science 19, no. 2 (1991): 189-96. https://doi.org/10.1109/27.106813
  27. Lee, SH, SJ You, Hong-Young Chang, and JK Lee. "Electron and Ion Kinetics in Magnetized Capacitively Coupled Plasma Source." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 25, no. 3 (2007): 455-63. https://doi.org/10.1116/1.2713408
  28. Winter, J, A Hecimovic, T De los Arcos, M Boke, and V Schulz-Von Der Gathen. "Instabilities in High-Power Impulse Magnetron Plasmas: From Stochasticity to Periodicity." Journal of Physics D: Applied Physics 46, no. 8 (2013): 084007.