DOI QR코드

DOI QR Code

Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites

  • Anuchit Hunyek (Program of General Education-Science (Physics), Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Wangklaikangwon Campus) ;
  • Chitnarong Sirisathitkul (Division of Physics, School of Science, Walailak University)
  • 투고 : 2021.08.24
  • 심사 : 2022.04.12
  • 발행 : 2023.03.25

초록

The combination of cobalt ferrite and natural rubber has a potential to enhance the functional properties of rubber ferrite composites available on the market. In this study, cobalt ferrite was synthesized by the sol-gel method with tapioca starch as a cheating agent and then incorporated into natural rubber using an internal mixer. The curing characteristics, magnetic hysteresis, complex permeability, and permittivity of the rubber ferrite composites were studied as a function of the loading from 0 to 25 phr. The cure time and scorch time tended to reduce with the addition of non-reinforced cobalt ferrite fillers. The remanent and saturation magnetizations were linearly proportional to the cobalt ferrite loading, consistent with the rule of mixture. On the other hand, the increase in cobalt ferrite loading from 5 to 25 phr slightly affected the coercive field and the complex permeability. Using the maximum loading of 25 phr, both real and imaginary parts of the permittivity were significantly raised and reduced with the frequency in the 10-300 MHz range.

키워드

과제정보

The research described in this paper was financially supported by the National Science and Technology Development Agency (Grant no. P-18-51764) and Rajamangala University of Technology Rattanakosin (Grant no. FDA-CO-62-8904-TH). The authors would like to thank Dr. P. Jantaratana of Kasetsart University for the access to characterization facilities.

참고문헌

  1. Abou Hammad, A.B., Abd El-Aziz, M.E., Hasanin, M.S. and Kamel, S. (2019), "A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles", Carbohydr. Polym., 216, 54-62. https://doi.org/10.1016/j.carbpol.2019.03.038.
  2. Borah, K. and Bhattacharyya, N.S. (2012), "Magnetodielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies", Compos. Part B: Eng., 43, 1309-1314. https://doi.org/10.1016/j.compositesb.2011.11.067.
  3. Das, T. and Verma, B. (2019), "High performance ternary polyaniline-acetylene black-cobalt ferrite hybrid system for supercapacitor electrodes", Synth. Met., 251, 65-74. https://doi.org/10.1016/j.synthmet.2019.03.025.
  4. Garigipati, R.K.S. and Malkapuram, R. (2020), "Sawdust reinforced polybenzoxazine composites: Thermal and structural properties", Adv. Mater. Res., 9(4), 311-321. https://doi.org/10.12989/amr.2020.9.4.311.
  5. Hasan, A., Aznury, M., Purnamasari, I., Manawan, M. and Liza, C. (2020), "Curing characteristics and physical properties of natural rubber composites using modified clay filler", Int. J. Technol., 11(4), 830-841. https://doi.org/10.14716/ijtech.v11i4.4083.
  6. He, Q.M., Tao, J.R., Yang, Y., Yang, D., Zhang, K., Fei, B. and Wang, M. (2022), "Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding", Compos. Part A: Appl. Sci. Manuf., 156, 106901. https://doi.org/10.1016/j.compositesa.2022.106901.
  7. Hunyek, A., Sirisathitkul, C., Mahaphap, C., Boonyang, U. and Tangwatanakul, W. (2017), "Sago starch: Chelating agent in sol-gel synthesis of cobalt ferrite nanoparticles", J. Australian Ceram. Soc., 53, 173-176. https://doi.org/10.1007/s41779-017-0022-1.
  8. Hunyek, A., Sririsathitkul, C. and Jantaratana, P. (2013), "Magnetic and dielectric properties of natural rubber and polyurethane composites filled with cobalt ferrite", Plast. Rubb. Compos., 42, 89-92. https://doi.org/10.1179/1743289812Y.0000000003.
  9. Hunyek, A., Sririsathitkul, C. and Jantaratana, P. (2019), "Comparative electromagnetic properties of polypropylene composites loaded with cobalt ferrites by melt mixing", Int. J. Nanoelectron. Mater., 12(4), 459-466.
  10. Ismail, H., Sam, S.T., Mohd Noor, A.F. and Bakar, A.A. (2007), "Properties of ferrite-filled natural rubber composites", Polym. Plast. Technol. Eng., 46, 641-650. https://doi.org/10.1080/03602550701305054
  11. Ismail, I., Matori, K.A., Abbas, Z., Zulkimi, M.M.M., Idris, F.M., Zaid, M.H.M., Rahim, N., Hasan, I.H. and Song, W.H. (2019), "Single- and double-layer microwave absorbers of cobalt ferrite and graphite composite at gigahertz frequency", J. Supercond. Nov. Magn., 32, 935-943. https://doi.org/10.1007/s10948-018-4749-x.
  12. Jauhar, S., Kaur, J., Goyal, A. and Singhal, S. (2016), "Tuning the properties of cobalt ferrite: A road towards diverse applications", RSC Adv., 6, 97694. https://doi.org/10.1039/C6RA21224G.
  13. Kalmagambetova, A. and Bogoyavlenskaya, T. (2021), "Effect of physical properties of samples on the mechanical characteristics of high-density polyethylene (HDPE)", Adv. Mater. Res., 10(1), 67-76. https://doi.org/10.12989/amr.2021.10.1.067.
  14. Khalifa, S.B., Gassoumi, M., Dhahbi, A.B., Alresheedi, F., Mahmoud, A.Z.A. and Beji, L. (2020), "The effect of the cobalt ferrites nanoparticles (CoFe2O4) on the porous silicon deposited by spin coating", Alex. Eng. J., 59, 1093-1098. https://doi.org/10.1016/j.aej.2019.12.031.
  15. Khan, L.U., Younas, M., Khan, S.U. and Ur Rehman, M.Z. (2020), "Synthesis and characterization of CoFe2O4/MWCNTs nanocomposites and high-frequency analysis of their dielectric properties", J. Mater. Eng. Perform., 29, 251-258. https://doi.org/10.1007/s11665-020-04572-9.
  16. Kumar, M., Shankar, S., Tuli, V., Mittal, S., Joshi, V., Jha, M.K. and Gupta, G. (2020), "Structural analysis and magnetoelectric sensing in cobalt ferrite-BaTiO3 composites", Nat. Acad. Sci. Lett., 43(7), 677-679. https://doi.org/10.1007/s40009-020-00939-7.
  17. Mahalakshmi, S., Jayasri, R., Nithiyanatham, S., Swetha, S. and Santhi, K. (2019), "Magnetic interactions and dielectric behaviour of cobalt ferrite and barium titanate multiferroics nanocomposites", Appl. Surf. Sci., 494, 51-56. https://doi.org/10.1016/j.apsusc.2019.07.096.
  18. Malini, K.A., Kurian, P. and Anantharaman, M.R. (2003), "Loading dependence similarities on the cure time and mechanical properties of rubber ferrite composites containing nickel zinc ferrite", Mater. Lett., 57, 3381-3386. https://doi.org/10.1016/S0167-577X(03)00079-X.
  19. Malini, K.A., Mohammed, E.M., Sindhu, S., Kurian, P., Date, S.K., Kulkarni, S.D., Joy, P.A. and Anantharaman, M.R. (2001), "Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite", J. Mater. Sci., 36, 5551-5557. https://doi.org/10.1023/A:1012545127918.
  20. Megahed, M., Tobbala, D.E. and Abd El-baky, M.A. (2021), "The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber-reinforced polymeric composites", Polym. Compos., 42(1), 271-284. https://doi.org/10.1002/pc.25823.
  21. Mirzaee, S., Shayesteh, S.F. and Mahdavifar, S. (2014), "Synthesis and characterization of cubic omega-3-coated cobalt ferrite nanoparticles", J. Supercond. Nov. Magn., 27, 1781-1785. https://doi.org/10.1007/s10948-014-2512-5.
  22. Mmelesi, O.K., Masunga, N., Kuvarega, A., Nkambule, T.T., Mamba, B.B. and Kefeni, K.K. (2021), "Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment", Mater. Sci. Semicond. Proc., 123, 105523. https://doi.org/10.1016/j.mssp.2020.105523.
  23. Mustafa, G., Islam, M.U., Zhang, W., Anwar, A.W., Jamil, Y., Murtaza, G., Ali, I., Hussain, M., Ali, A. and Ahmad, M. (2015), "Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 ferrites prepared by sol-gel method", J. Magn. Magn. Mater., 387, 147-154. http://doi.org/10.1016/j.jmmm.2015.03.091.
  24. Ojogbo, E., Blanchard, R. and Mekonnen, T. (2018), "Hydrophobic and melt processable starch-laurate esters: Synthesis, structure-property correlations", J. Polym. Sci. Part A: Polym. Chem., 56(6), 2611-2622. https://doi.org/10.1002/pola.29237.
  25. Paluch, M., Ostrowska, J., Tynski, P., Sadurski, W. and Konkol, M. (2022), "Synthesis and characterization of cubic omega-3-coated cobalt ferrite nanoparticles", J. Polym. Environ., 30, 728-740. https://doi.org/10.1007/s10924-021-02235-x.
  26. Shapkin, N.P., Panasenko, A.E., Khal'chenko, I.G., Pechnikov, V.S., Maiorov, V.Y., Maslova, N.V., Razov, V.I. and Papynov, E.K. (2020), "Magnetic composites based on cobalt ferrite, vermiculite, and rice husks: Synthesis and properties", Russian J. Inorg. Chem., 65(10), 1614-1622. https://doi.org/0.1134/S0036023620100186. 100186
  27. Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli A. (2020), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
  28. Solomon, M.A., Kurian, P., Joy, P.A. and Anantharaman, M.R. (2004), "Processability and magnetic properties of rubber ferrite composites containing barium ferrite", Int. J. Polym. Mater., 53, 565-575. https://doi.org/10.1080/00914030490461685.
  29. Srinivasan, S.Y., Paknikar, K.M., Bodas, D. and Gajbhiye, V. (2018), "Applications of cobalt ferrite nanoparticles in biomedical nanotechnology", Nanomedicine, 13(10), 1221-1238. https://doi.org/10.2217/nnm-2017-0379.
  30. Wang, M., Tang, X.H., Cai, J.H., Wu, H., Shen, J.B. and Guo, S.Y. (2021a), "Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review", Carbon, 177, 377-402. https://doi.org/10.1016/j.carbon.2021.02.047.
  31. Wang, M., Zhang, Y., Dong, C., Chen, G., Guan, H. (2019), "Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites", Nanomater. Nanotechnol., 9, 1-7. https://doi.org/10.1177/1847980419837821.
  32. Wang, Y., Gao, Y.N., Yue, T.N., Chen, X.D. and Wang, M. (2021b), "Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals", Appl. Surf. Sci., 563, 150255. https://doi.org/10.1016/j.apsusc.2021.150255.
  33. Yang, Y., Ali, F., Said, A., Ali, N., Ahmad, S., Raziq, F. and Khan, S. (2021), "Fabrication, mechanical, and electromagnetic studies of cobalt ferrite based-epoxy nanocomposites", Polym. Compos., 42(1), 285-296. https://doi.org/10.1002/pc.25824.
  34. Zeng, Y., Zhu, X., Xie J. and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi.org/10.12989/anr.2021.10.3.295.
  35. Zhang, N., Liu, X.D., Huang, Y., Wang, M.Y., Li, S.P., Zong, M. and Liu, P.B. (2019), "Novel nanocomposites of cobalt ferrite covalently-grafted on graphene by amide bond as superior electromagnetic wave absorber", J. Colloid Interf. Sci., 540, 218-227. https://doi.org/10.1016/j.jcis.2019.01.025.