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REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS

NUMBERS

Fatih Erduvan and Refik Keskin

Abstract. In this paper, we determine all repdigits, which are difference of two
Pell and Pell-Lucas numbers. It is shown that the largest repdigit which is difference
of two Pell numbers is 99 = 169 − 70 = P7 − P6 and the largest repdigit which is
difference of two Pell-Lucas numbers is 444 = 478− 34 = Q7 −Q4.

1. Introduction

Let (Pn)n≥0 and (Qn)n≥0 be the sequences of Pell and Pell-Lucas numbers defined
by P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, and Q0 = 2, Q1 = 2, Qn+2 = 2Qn+1 + Qn for
n ≥ 0, respectively. Binet formulas for these numbers are

Pn =
λn − δn

2
√

2
and Qn = λn + δn,

where λ = 1 +
√

2 and δ = 1−
√

2, which are the roots of the characteristic equation
x2 − 2x − 1 = 0. It can be seen that 2 < λ < 3, −1 < δ < 0, and λδ = −1. The
relation between n–th Pell number Pn and λ is given by

(1) λn−2 ≤ Pn ≤ λn−1

for n ≥ 1. Also, the relation between n–th Pell–Lucas number Qn and λ is given by

(2) λn−1 ≤ Qn < 2λn

for n ≥ 1. The inequalities (1) and (2) can be proved by induction on n.
A non-negative integer N is called a base b-repdigit if all of its base b-digits are

equal. Particularly, we say to simplify notation, for b = 10 that N is a repdigit.
Recently, several authors have dealt with the problem of finding the repdigits in the
second-order linear recurrence sequences. In [7], the author has found all Fibonacci
and Lucas numbers which are repdigits. The largest repdigits in the Fibonacci and
Lucas sequences are F10 = 55 and L5 = 11. In [6], the authors have found all
Pell and Pell-Lucas numbers which are repdigits. The largest repdigits in the Pell
and Pell-Lucas sequences are P3 = 5 and Q2 = 6. In [11], the authors solved the
problem of finding the repdigits as product of any two numbers in the sequences of
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Pell numbers or Pell-Lucas numbers. In [12], the authors determined base-b repdigits
that are difference of two Fibonacci numbers. In this paper, we solve the Diophantine
equations

(3) Pn − Pm =
d · (10k − 1)

9

(4) Qn −Qm =
d · (10k − 1)

9

where 1 ≤ d ≤ 9, k ≥ 1, and 1 ≤ m < n. Note that, the case m = 0 in the equation
(3) has been also resolved in [6]. Furthermore, Q0 and Q1 values are the same. Thus,
we will assumed that m ≥ 1.

Recently, many of the above mentioned equations are solved by Baker’s theory of
lower bounds for a nonzero linear form in logarithms of algebraic numbers. Now we
give some well known results, which are useful in proving our main theorems.

2. Auxiliary results

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + ...+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],

where the ai’s are relatively prime integers with a0 > 0 and the η(i)’s are conjugates
of η. Then

(5) h(η) =
1

d

(
log a0 +

d∑
i=1

log
(
max

{
|η(i)|, 1

}))
is called the logarithmic height of η. In particular, if η = a/b is a rational number
with gcd(a, b) = 1 and b > 0, then h(η) = log (max {|a|, b}) .

We give some properties of the logarithmic height whose proofs can be found in [3].

(6) h(η ± γ) ≤ h(η) + h(γ) + log 2,

(7) h(ηγ±1) ≤ h(η) + h(γ),

(8) h(ηm) = |m|h(η).

Now we give a theorem which is deduced from Corollary 2.3 of Matveev [8] and
provides a large upper bound for the subscript n in the equations (3) and (4) (also
see Theorem 9.4 in [4]).

Theorem 1. Assume that γ1, γ2, ..., γt are positive real algebraic numbers in a real
algebraic number field K of degree D, b1, b2, ..., bt are rational integers, and

Λ := γb11 · · · γbtt − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,
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where

B ≥ max {|b1|, ..., |bt|} ,
and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, ..., t.

The following lemma was given in [2]. This lemma is an immediate variation of the
lemma of Dujella and Pethő in [5]. The result (Lemma 5 (a)) given in [5] is a variation
of a lemma of Baker and Davenport [1]. This lemma will be used to reduce the upper
bound for the subscript n in the equations (3) and (4). For any real number x, we let
||x|| = min {|x− n| : n ∈ Z} be the distance from x to the nearest integer.

Lemma 2. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational number γ such that q > 6M, and let A,B, µ be some real
numbers with A > 0 and B > 1. Let ε := ||µq|| −M ||γq||. If ε > 0, then there exists
no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following lemma can be found in [13].

Lemma 3. Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

|log(1 + x)| < − log(1− a)

a
· |x|

and

|x| < a

1− e−a
· |ex − 1| .

The following lemmas can be deduced from [9] and [10].

Lemma 4. All nonnegative integer solutions (n,m, d, k, Pn + Pm) of the equation,

Pn + Pm =
d · (10k − 1)

9

with the d ∈ {1, 2, ..., 9} have

(n,m, d, k, Pn + Pm) ∈

 (1, 0, 1, 1, 1) , (1, 1, 2, 1, 2) , (2, 0, 2, 1, 2) ,
(2, 1, 3, 1, 3) , (2, 2, 4, 1, 4) , (3, 0, 5, 1, 5) ,
(3, 1, 6, 1, 6) , (3, 2, 7, 1, 7) , (6, 5, 9, 2, 99)

 .

Lemma 5. All positive integer solutions (n,m, d, k,Qn +Qm) of the equation,

Qn +Qm =
d · (10k − 1)

9

with the d ∈ {1, 2, ..., 9} have

(n,m, d, k,Qn +Qm) ∈ {(1, 1, 4, 1, 4) , (2, 1, 8, 1, 8) , (5, 2, 8, 2, 88)} .



66 Fatih Erduvan and Refik Keskin

3. Main Theorems

Theorem 6. Let 1 ≤ m < n, k ≥ 1,and 1 ≤ d ≤ 9. If the equations (3) has a
solution (n,m, d, k, Pn − Pm), then

(n,m, d, k, Pn − Pm) ∈
{

(2, 1, 1, 1, 1) , (3, 1, 4, 1, 4) , (3, 2, 3, 1, 3) ,
(4, 1, 1, 2, 11) , (4, 3, 7, 1, 7) , (7, 6, 9, 2, 99)

}
.

Proof. Assume that Pn − Pm is a repdigit. Then the equation (3) holds for 1 ≤
m < n with k ≥ 1. Let us suppose that 1 ≤ m < n ≤ 99. Then by using Mathematica
program, we obtain the only solutions displayed in the statement of Theorem 6. Let
n−m = 1. Then we get

Pm+1 − Pm = Pm + Pm−1.

Thus by Lemma 4, we get the solutions

(n,m, d, k, Pn − Pm) = (2, 1, 1, 1, 1) , (3, 2, 3, 1, 3) , (4, 3, 7, 1, 7) , (7, 6, 9, 2, 99) ,

which is displayed in the statement of Theorem 6. From now on, assume that n ≥
100,m ≥ 1 and n−m ≥ 2. Then, by using (1), we get

λ2k−2 < 10k−1 <
d · (10k − 1)

9
= Pn − Pm ≤ λn−1 − 1 < λn−1.

This shows that 2k < n+ 1. That is, k < n+ 1. On the other hand, rearranging the
equation (3) as

(9)
λn√

8
− d · 10k

9
= Pm +

δn√
8
− d

9

and taking absolute values of both sides of (9), we get

(10)

∣∣∣∣ λn√8
− d · 10k

9

∣∣∣∣ ≤ Pm +
|δ|n√

8
+
d

9
< λm−1 + 1.1.

Dividing both sides of (10) by λn√
8

yields∣∣∣∣∣1− λ−n · 10k ·
√

8 · d
9

∣∣∣∣∣ ≤ √8 · λm−n−1 + 1.1 ·
√

8 · λ−n

<
√

8 · λm−n · (λ−1 + 1.1 · λ−m)

< 2.5 · λm−n,(11)

where we have used the facts that m ≥ 1. Now, let us apply Theorem 1 with (γ1, b1) :=

(λ,−n) , (γ2, b2) := (10, k) , (γ3, b3) :=
(√

8·d
9
, 1
)
. The number field containing positive

real numbers γ1, γ2, and γ3 is K := Q(
√

2), which has degree 2. That is, D = 2. Now,
we show that

Λ1 := 1− λ−n · 10k ·
√

8 · d
9

is nonzero. Contrast to this, we assume that Λ1 = 0. Then we get λn =
√

8 · d · 10k/9.
Conjugating in Q(

√
2) gives us δn = −

√
8 · d · 10k/9 and so Qn = λn + δn = 0, which

is impossible. Moreover, since

h(γ1) = h(λ) =
log λ

2
, h(γ2) = h(10) = log 10
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and

h(γ3) ≤ h(
√

8) + h(d) + h(9) ≤ log 8

2
+ log 9 + log 9 < 5.44

by (7) we can take A1 := 0.9, A2 := 4.61 and A3 := 10.88. Also, since k < n + 1, we
can take B := n+1. Thus, taking into account the inequality (11) and using Theorem
1, we obtain

2.5 · λm−n > |Λ1| > exp (C · (1 + log(n+ 1)) (0.9) (4.61) (10.88)) ,

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). This implies that

(12) (n−m) log λ− log 2.5 < 4.38 · 1013 · (1 + log(n+ 1)).

Now, let rearrange the equation (3) as

(13)
λn√

8
− λm√

8
− d · 10k

9
=

δn√
8
− δm√

8
− d

9
.

Taking absolute values of both sides of (13), we get

(14)

∣∣∣∣λn · (1− λm−n)√
8

− d · 10k

9

∣∣∣∣ ≤ |δ|n + |δ|m√
8

+
d

9
< 1.2.

We divide both sides of (14) by λn·(1−λm−n)√
8

to obtain∣∣∣∣∣1− λ−n · (1− λm−n)−1 ·
√

8 · d · 10k

9

∣∣∣∣∣ ≤ 3.4 · λ−n · (1− λm−n)−1

< (4.2) · λ−n.(15)

Put (γ1, b1) := (λ,−n) , (γ2, b2) := (10, k) , and (γ3, b3) :=
(
(1− λm−n)−1 ·

√
8 · d/9, 1

)
.

The numbers γ1, γ2, and γ3 are positive real numbers and elements of the field
K = Q(

√
2) and so D = 2. Let

Λ2 := 1− λ−n · (1− λm−n)−1 ·
√

8 · d · 10k

9
.

Then Λ2 is nonzero. For, if Λ2 = 0, then λn = (1−λm−n)−1 ·
√

8 ·d ·10k/9. Conjugating
in Q(

√
2) gives us δn = −(1 − δm−n)−1 ·

√
8 · d · 10k/9. By a simple computation, it

seen that Qn = Qm, which is impossible since n > m. Since

h(γ1) = h(λ) =
log λ

2
, h(γ2) = h(10) = log 10

and

h(γ3) ≤ h(
√

8) + h(d) + h(9) + h((1− λm−n)−1)

≤ log 8

2
+ log 9 + log 9 + (n−m)

log λ

2
+ log 2

< 6.13 + (n−m)
log λ

2

by (6),(7), and (8), we can take A1 := 0.9, A2 := 4.61 and A3 := 12.26+(n−m) log λ.
The same argument as above shows that we can take B := n + 1. Thus, taking into
account the inequality (15) and using Theorem 1, we obtain

4.2 · λ−n > |Λ2| > exp (C · (1 + log(n+ 1)) (0.9) (4.61) (12.26 + (n−m) log λ)) ,
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where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). This implies that

(16) n log λ− log 4.2 < 4.03 · 1012 · (1 + log(n+ 1)) · (12.26 + (n−m) log λ) .

Combining the inequalities (12) and (16), we get

(17) n log λ− log 4.2 < 4.03 · 1012(1 + log(n+ 1))
(
12.26 + (log 2.5 + 4.38 · 1013(1 + log(n+ 1)

)
Hence, a computer search with Mathematica gives us that n < 9.84 · 1029. Now, let
us try to reduce the upper bound on n by applying Lemma 2. Let

z1 := k log 10− n log λ+ log(
√

8d/9)

and Λ1 := 1− ez1 . From (11), we have

|Λ1| = |1− ez1 | < 2.5 · λm−n < 0.45

for n−m ≥ 2. Choosing a := 0.45, we get the inequality

|z1| < −
log 0.55

0.45
· 2.5

λn−m
< (3.33) · λ−(n−m)

by Lemma 3. Thus, it follows that

0 <
∣∣∣k log 10− n log λ+ log(

√
8d/9)

∣∣∣ < (3.33) · λ−(n−m).

Dividing this inequality by log λ, we get

(18) 0 < |kγ − n+ µ| < (3.78) · λ−(n−m),

where

γ :=
log 10

log λ
/∈ Q and µ :=

log(
√

8d/9)

log λ
.

Put M := 9.84 · 1029, which is an upper bound on k since k < n + 1 and n <
9.84 · 1029. We found that q69, the denominator of the 69 th convergent of γ exceeds
6M. Considering the fact that 1 ≤ d ≤ 9, a quick computation with Mathematica
gives us the inequality

0.001 < ε := ||µq69|| −M ||γq69|| < 0.43.

Let A := 3.78, B := λ, and w := n−m. Thus, Lemma 2 says to us that the inequality
(18) has a solutions for

n−m <
log(Aq69/ε)

logB
< 91.52,

which implies that n−m ≤ 91. Consequently, substituting this upper bound for n−m
into (16), we obtain n < 1.63 · 1016. Now, let

z2 := k log 10− n log λ+ log

(
(1− λm−n)−1 ·

√
8 · d

9

)
.

and Λ2 := 1− ez2 . It is clear that

|Λ2| = |1− ez2 | < (4.2) · λ−n < 0.01

by (15), where we have used the fact that n ≥ 100. Thus, taking a := 0.01 in Lemma
3 and making necessary calculations, we get

|z2| <
log(100/99)

0.01
· 4.2

λn
< 4.23 · λ−n.



Repdigits as difference of two Pell or Pell-Lucas numbers 69

That is,

0 <

∣∣∣∣∣k log 10− n log λ+ log

(
(1− λm−n)−1 ·

√
8 · d

9

)∣∣∣∣∣ < 4.23 · λ−n.

Dividing both sides of the above inequality by log λ, we obtain

(19) 0 < |kγ − n+ µ| < 4.8 · λ−n,
where

γ :=
log 10

log λ
and µ :=

log
(

(1−λm−n)−1·
√
8·d

9

)
log λ

.

Since k < n+1, we can take M := 1.63 ·1016, which is an upper bound on k. We found
that q46, the denominator of the 46 th convergent of γ exceeds 6M. For 2 ≤ n−m ≤ 91
and 1 ≤ d ≤ 9, a quick computation with Mathematica gives us the inequality

0.0002 < ε := ||µq46|| −M ||γq46|| < 0.499.

Let A := 4.8, B := λ, and w := n in Lemma 2. Thus, with the help of Mathematica,
we can say that if the inequality (19) has a solution, then

n <
log(Aq46/ε)

logB
< 64.1,

which yields n ≤ 64. This contradicts our assumption that n ≥ 100. Thus, the proof
is completed.

Now, we can give the following result.

Corollary 7. The largest repdigit, which is difference of two Pell numbers is
99 = 169− 70 = P7 − P6.

Theorem 8. Let 1 ≤ m < n, k ≥ 1, and 1 ≤ d ≤ 9. If Qn−Qm is a repdigit, then

(n,m, d, k,Qn −Qm) ∈ {(2, 1, 4, 1, 4) , (3, 2, 8, 1, 8) , (7, 4, 4, 3, 444)} .

Proof. Assume that Qn − Qm is a repdigit. Then the equation (4) holds for 1 ≤
m < n with k ≥ 1. Let us suppose that 1 ≤ m < n ≤ 99. Then by using Mathematica
program, we obtain only the solutions displayed in the statement of Theorem 8. Let
n−m = 1. Then we get

Qm+1 −Qm = Qm +Qm−1.

Thus by Lemma 5, we get the solution (m,m − 1, d, k,Qm+1 − Qm) = (2, 1, 8, 1, 8),
which gives the solution (n,m, d, k,Qn − Qm) = (3, 2, 8, 1, 8). From now on, assume
that n ≥ 100,m ≥ 1 and n − m ≥ 2. Since Qn is even for all n, Qn − Qm is even.
Therefore, we get d = 2, 4, 6, 8. Then, by using (2), we get

λ2k−4 < 10k−2 <
8

9
· 10k−1 <

d · (10k − 1)

9
= Qn −Qm < λn+1.

This shows that 2k < n+ 5. That is, k < n+ 5. On the other hand, rearranging the
equation (4) as

(20) λn − d · 10k

9
= Qm − δn −

d

9
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and taking absolute values of both sides of (20), we get

(21)

∣∣∣∣λn − d · 10k

9

∣∣∣∣ ≤ Qm + |δ|n +
d

9
< 2λm + 1.

Dividing both sides of (21) by λn yields∣∣∣∣1− λ−n · d · 10k

9

∣∣∣∣ ≤ 2λm−n + λ−n

< λm−n(2 + λ−m)

< 2.5 · λm−n(22)

where we have used the fact that m ≥ 1. Now, let us apply Theorem 1 with (γ1, b1) :=
(λ,−n) , (γ2, b2) := (10, k) , (γ3, b3) := (d/9, 1) . Observe that the numbers γ1, γ2, and
γ3 are positive real numbers and belong to the field K = Q(

√
2). It is obvious that

the degree of the field K is 2. So D = 2. Now, we show that

Λ1 := 1− λ−n · d · 10k

9

is nonzero. Contrast to this, we assume that Λ1 = 0. Then λn = d · 10k/9, which is
impossible since λn is irrational. Moreover, since

h(γ1) = h(λ) =
log λ

2
, h(γ2) = h(10) = log 10

and

h(γ3) ≤ h(d) + h(9) ≤ log 8 + log 9 < 4.3

by (7), we can take A1 := 0.9, A2 := 4.61 and A3 := 8.6. Also, since k < n+5, we can
take B := n+ 5. Thus, taking into account the inequality (22) and using Theorem 1,
we obtain

(2.5) · λm−n > |Λ1| > exp (C · (1 + log(n+ 5)) (0.9) (4.61) (8.6)) ,

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). This implies that

(23) (n−m) log λ− log 2.5 < 3.47 · 1013 · (1 + log(n+ 5)).

Now, let rearrange the equation (4) as

(24) λn − λm − d · 10k

9
= −δn + δm − d

9
.

Taking absolute values of both sides of (24), we get

(25)

∣∣∣∣λn · (1− λm−n)− d · 10k

9

∣∣∣∣ ≤ |δ|n + |δ|m +
d

9
< 1.4.

Dividing both sides of (25) by λn · (1− λm−n), we obtain∣∣∣∣1− λ−n · (1− λm−n)−1 · d · 10k

9

∣∣∣∣ < (1.4) · λ−n · (1− λm−n)−1

< (1.7) · λ−n.(26)
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Put (γ1, b1) := (λ,−n) , (γ2, b2) := (10, k) , and (γ3, b3) := ((1− λm−n)−1 · d/9,−1) .
The number field containing γ1, γ2, and γ3 is K = Q(

√
2), which has degree D = 2.

Let

Λ2 := 1− λ−n · (1− λm−n)−1 · d · 10k

9
.

Then Λ2 is nonzero. For, if Λ2 = 0, then λn = (1 − λm−n)−1 · d · 10k/9. Conjugating
in Q(

√
2) gives us δn = −(1 − δm−n)−1 · d · 10k/9. By a simple computation, it seen

that Qn = Qm, which is impossible since n > m. Since

h(γ1) = h(λ) =
log λ

2
, h(γ2) = h(10) = log 10,

and

h(γ3) ≤ h(d) + h(9) + h((1− λm−n)−1)

≤ log 8 + log 9 + (n−m)
log λ

2
+ log 2

< 4.97 + (n−m)
log λ

2

by (6),(7), and (8), we can take A1 := 0.9, A2 := 4.61 and A3 := 9.94 + (n−m) log λ.
The same argument as above shows that we can take B := n + 5. Thus, taking into
account the inequality (26) and using Theorem 1, we obtain

(1.7) · λ−n > |Λ2| > exp (C · (1 + log(n+ 5)) (0.9) (4.61) (9.94 + (n−m) log λ)) ,

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). This implies that

(27) n log λ− log(1.7) < 4.03 · 1012(1 + log(n+ 5)) (9.94 + (n−m) log λ) .

Combining the inequalities (23) and (27), we get

(28) n log λ− log(1.7) < 4.03 · 1012(1 + log(n+ 5))(9.94 + log (2.5) + 3.47 · 1013 · (1 + log(n+ 5))).

Hence, a computer search with Mathematica gives us that n < 7.74 · 1029. Now, let
us try to reduce the upper bound on n by applying Lemma 2. Now, let

z1 := k log 10− n log λ+ log(d/9)

and Λ1 := 1− ez1 . From (22), we have

|Λ1| = |1− ez1| <
2.5

λn−m
< 0.45

for n−m ≥ 2. Choosing a := 0.45, we get the inequality

|z1| < −
log(0.55)

0.45
· 2.5

λn−m
< (3.33) · λ−(n−m)

by Lemma 3. Thus, it follows that

(29) 0 < |k log 10− n log λ+ log(d/9)| < (3.33) · λ−(n−m).

Dividing this inequality by log λ, we get

(30) 0 <

∣∣∣∣k( log 10

log λ

)
− n+

(
log(d/9)

log λ

)∣∣∣∣ < (3.78) · λ−(n−m).
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Take γ :=
log 10

log λ
/∈ Q and M := 7.74 · 1029. We found that q69, the denominator of

the 69 th convergent of γ exceeds 6M. Now let

µ :=
log(d/9)

log λ
.

Considering the fact that d = 2, 4, 6, 8 a quick computation with Mathematica gives
us that the inequality

0.07 < ε := ||µq69|| −M ||γq69|| < 0.36.

Let A = 3.78, B = λ, and w = n−m in Lemma 2. Thus, if the inequality (30) has a
solution, then

n−m <
log(Aq69/ε)

logB
< 87.46,

which implies that n −m ≤ 87. Substituting this upper bound for n −m into (27),
we obtain n < 1.52 · 1016. Now, let

(31) z2 := k log 10− n log λ+ log

(
(1− λm−n)−1 · d

9

)
.

and Λ2 := 1− ez2 . It is clear that

|Λ2| = |1− ez2 | < (1.7) · λ−n < 0.01

by (26), where we have used the fact that n ≥ 100. Thus, taking a := 0.01 in Lemma
3 and making necessary calculations, we get

|z2| <
log(100/99)

0.01
· 1.7

λn
< (1.71) · λ−n.

That is,

(32) 0 <

∣∣∣∣k log 10− n log λ+ log

(
(1− λm−n)−1 · d

9

)∣∣∣∣ < (1.71) · λ−n.

Dividing both sides of the above inequality by log λ, we obtain

(33) 0 < |kγ − n+ µ| < A ·B−w,
where

γ :=
log 10

log λ
, µ :=

log
(

(1−λm−n)−1·d
9

)
log λ

, A := 1.95, B := λ,

and w := n. Since k < n + 5, we can take M := 1.52 · 1016. We found that q44, the
denominator of the 44 th convergent of γ exceeds 6M. Applying Lemma 2 to the
inequality (33) for 2 ≤ n−m ≤ 87, a quick computation with Mathematica gives us
that

0.002 < ε := ||µq44|| −M ||γq44|| < 0.496

and thus, we can say that if the inequality (33) has a solution, then

n <
log(Aq44/ε)

logB
< 55.92.

This yields n ≤ 55, which contraicts our assumption that n ≥ 100.

Now, we can give the following result.
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Corollary 9. The largest repdigit which is difference of two Pell-Lucas numbers
is 444 = 478− 34 = Q7 −Q4.
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[5] A. Dujella and A. Pethò, A generalization of a theorem of Baker and Davenport, Quart. J.
Math. Oxford Ser. (2), 49 (3) (1998), 291–306.

[6] B. Faye and F. Luca, Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math.
Inform. 45 (2015), 55–60.

[7] F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2)
(2000), 243–254.

[8] E. M. Matveev, An Explicit lower bound for a homogeneous rational linear form in the logarithms
of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat., 64 (6) (2000), 125–180 (Russian).
Translation in Izv. Math. 64 (6) (2000), 1217–1269.
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