DOI QR코드

DOI QR Code

CERTAIN TOPOLOGICAL METHODS FOR COMPUTING DIGITAL TOPOLOGICAL COMPLEXITY

  • Melih Is (Department of Mathematics, Ege University) ;
  • Ismet Karaca (Department of Mathematics, Ege University)
  • 투고 : 2022.12.16
  • 심사 : 2022.12.30
  • 발행 : 2023.03.30

초록

In this paper, we examine the relations of two closely related concepts, the digital Lusternik-Schnirelmann category and the digital higher topological complexity, with each other in digital images. For some certain digital images, we introduce κ-topological groups in the digital topological manner for having stronger ideas about the digital higher topological complexity. Our aim is to improve the understanding of the digital higher topological complexity. We present examples and counterexamples for κ-topological groups.

키워드

과제정보

The authors would like to express their gratitude to Professor Laurence Boxer for his valuable suggestions making the article clearer and more understandable. Also, the authors would like to thank the anonymous referees for their helpful comments. Finally, the authors are thankful to Research Fund of the Ege University for the support.

참고문헌

  1. I. Basabe, J. Gonzalez, Y. Rudyak, and D. Tamaki, Higher topological complexity and its symmetrization, Algebraic Geom. Topol. 14 (2014), 2103-2124.  https://doi.org/10.2140/agt.2014.14.2103
  2. C. Berge, Graphs and Hypergraphs, 2nd ed. North-Holland, Amsterdam (1976). 
  3. A. Borat, and T. Vergili, Digital Lusternik-Schnirelmann category, Turk. J. Math. 42 (2018), 1845-1852.  https://doi.org/10.3906/mat-1801-94
  4. L. Boxer, Digitally continuous functions, Pattern Recogn. Lett. 15 (1994), 833-839.  https://doi.org/10.1016/0167-8655(94)90012-4
  5. L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis. 10 (1999), 51-62.  https://doi.org/10.1023/A:1008370600456
  6. L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis. 22 (2005), 19-26.  https://doi.org/10.1007/s10851-005-4780-y
  7. L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vis. 24 (2006), 167-175.  https://doi.org/10.1007/s10851-005-3619-x
  8. L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vis. 25 (2006), 159-171.  https://doi.org/10.1007/s10851-006-9698-5
  9. L. Boxer, Continuous maps on digital simple closed curves, Appl. Math. 1 05 (2010), 377-386.  https://doi.org/10.4236/am.2010.15050
  10. L. Boxer, and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci. 11 (4) (2012), 161-180. 
  11. L. Boxer, and P.C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Appl. Gen. Topol. 17 (2) (2016), 139-158.  https://doi.org/10.4995/agt.2016.4624
  12. L. Boxer, Alternate product adjacencies in digital topology, Appl. Gen. Topol. 19 (1) (2018), 21-53.  https://doi.org/10.4995/agt.2018.7146
  13. O. Ege, and I. Karaca, Digital fibrations, Proc. Nat. Academy Sci. India Sec. A 87 (2017), 109-114. 
  14. M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211-221.  https://doi.org/10.1007/s00454-002-0760-9
  15. M. Farber, Invitation to Topological Robotics, EMS, Zurich (2008). 
  16. S.E. Han, Non-product property of the digital fundamental group, Inf. Sci. 171 (1-3) (2005), 73-91.  https://doi.org/10.1016/j.ins.2004.03.018
  17. G.T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Models Im. Proc. 55 (1993), 381-396.  https://doi.org/10.1006/cgip.1993.1029
  18. M. Is, and I. Karaca, The higher topological complexity in digital images, Appl. Gen. Topol. 21 (2020), 305-325.  https://doi.org/10.4995/agt.2020.13553
  19. I. Karaca, and M. Is, Digital topological complexity numbers, Turk. J. Math. 42 (6) (2018), 3173-3181.  https://doi.org/10.3906/mat-1807-101
  20. E. Khalimsky, Motion, deformation, and homotopy in infinite spaces, In: Proceedings IEEE International Conferences on Systems, Man, and Cybernetics. (1987), 227-234. 
  21. T.Y. Kong, A digital fundamental group, Comp. Graph. 13 (1989), 159-166.  https://doi.org/10.1016/0097-8493(89)90058-7
  22. D.W. Lee, Digital singular homology groups of digital images, Far East J. Math. 88 (2014), 39-63. 
  23. D.W. Lee, Digital H-spaces and actions in the pointed digital homotopy category, Appl. Algebra Eng. Comm. Comput. 31 (2020), 149-169.  https://doi.org/10.1007/s00200-019-00398-8
  24. G. Lupton, J. Oprea, and N. Scoville, Homotopy theory on digital topology, Discrete Comput. Geom. 67 (2021), 112-165.  https://doi.org/10.1007/s00454-021-00336-x
  25. J.F. Peters, Topology of Digital Images, Visual pattern discovery in proximity spaces (Intelligent Systems Reference Library, 63), Springer (2014). 
  26. A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979), 76-87.  https://doi.org/10.1080/00029890.1979.11994873
  27. A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recogn. Lett. 4 (1986), 177-184.  https://doi.org/10.1016/0167-8655(86)90017-6
  28. Y. Rudyak, On higher analogs of topological complexity, Topol. Appl. 157 (5) (2010), 916-920.  https://doi.org/10.1016/j.topol.2009.12.007
  29. T. Vergili, and A. Borat, Digital Lusternik-Schnirelmann category of digital functions, Hacettepe. J. Math. Stat. 49 (4) (2020), 1414-1422. https://doi.org/10.15672/hujms.559796