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ITERATIVE PROCESS FOR FINDING FIXED POINTS OF

QUASI-NONEXPANSIVE MULTIMAPS IN CAT(0) SPACES

Pitchaya Kingkam∗ and Jamnian Nantadilok

Abstract. Let E be a CAT(0) space and K be a nonempty closed convex subset
of E. Let T : K → P(K) be a multimap such that F (T ) 6= ∅ and PT (x) = {y ∈ Tx :
d(x, y) = d(x, Tx)}. Define sequence {xn} by xn+1 = (1 − α)vn

⊕
αwn, yn = (1 −

β)un
⊕
βwn, zn = (1−γ)xn

⊕
γun where α, β, γ ∈ [0; 1];un ∈ PT (xn); vn ∈ PT (yn)

and wn ∈ PT (zn). (1) If PT is quasi-nonexpansive, then it is proved that {xn}
converges strongly to a fixed point of T . (2) If a multimap T satisfies Condition(I)
and PT is quasi-nonexpansive, then {xn} converges strongly to a fixed point of T .
(3) Finally, we establish a weak convergence result. Our results extend and unify
some of the related results in the literature.

1. Introduction

Let X denotes a real Banach space. A subset K of X is called proximinal if for
each x ∈ X, there exists k ∈ K such that d(x, k) = d(x,K) = inf{‖x− y‖ : y ∈ K}.
It is well known that weakly compact convex subsets of a Banach space and closed
convex subsets of a uniformly convex Banach space are proximinal. We denote the
family of nonempty proximinal bounded subsets of K by P(K) and let CB(K) denote
the class of all nonempty closed and bounded subsets of K. It is well known that if
K is a proximinal subset of X, then K is closed. For every A,B ∈ CB(X), let H be
a Hausdorff metric induced by the metric d of X. Define H by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)}.

A point x ∈ K is called a fixed point of a multivlaued mapping T : K → CB(K) if
x ∈ Tx. A set of all fixed points of T is denoted by F (T ).

Definition 1.1. Let K be a closed and convex subset of a Banach space X. A
multivalued mapping T : K → CB(K) is said to be:

(a) nonexpansive if H(Tx, Ty) ≤ ‖x− y‖ for all x, y ∈ K,
(b) quasi-nonexpansive if H(Tx, p) ≤ ‖x− p| for all x ∈ K and p ∈ F (T ).
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It is known that every nonexpansive multivalued map T with F (T ) 6= ∅ is quasi-
nonexpansive, but the converse is not true. The investigation of fixed points for
multivalued mappings using the Hausdorff metric was initiated by Markin [20] (see
also [21]). Multivalued fixed point theory has applications in control theory, convex
optimization, differential inclusion, and economics (see, [11] and references therein).
The theory of multivalued mappings is more difficult than the corresponding theory of
single valued mappings. Different iterative processes have been used to approximate
the fixed points of multivalued mappings (see [6, 14, 18, 32] and references therein).
Among these iterative processes, Sastry and Babu [27] considered the following.

Throughout this paper, N denotes the set of positive integers. Let K be a nonempty
convex subset of X, and T : K → P(K) be a multivalued mapping with p ∈ Tp for
all p ∈ K.

(i) The sequences of Mann iterates is defined by x1 ∈ K,

xn+1 = (1− an)xn + anyn, n ∈ N(1)

where yn ∈ Txn is such that ‖yn − p‖ = d(p, Txn) and {an} is a sequence of
numbers in (0, 1) satisfying lim

n→∞
an = 0 and

∑∞
n=1 an =∞.

(ii) Ishikawa iterative process is defined by starting with x1 ∈ K and

xn+1 = (1− an)xn + anun,

yn = (1− bn)xn + bnzn, n ∈ N
(2)

where un ∈ Tyn, zn ∈ Txn are such that ‖un − p‖ = d(p, Tyn), ‖zn − p‖ =
d(p, Txn) and {an}, {bn} are sequences of numbers with 0 < an, bn < 1 satisfying
lim
n→∞

bn = 0 and
∑∞

n=1 anbn =∞.

Later, Panyanak [25] generalized the results proved by Sastry and Babu [27].
The following lemma is due to Nadler [21].

Lemma 1.2. Let A,B ∈ CB(X) and a ∈ A. If µ > 0, then there exists b ∈ B such
that d(a, b) ≤ H(A,B) + µ.

Based on the above lemma, Song and Wang [30] modified the iterative process
due to Panyanak [25] and improved the results presented there. They used (2) but
an, bn ∈ [0, 1] with lim

n→∞
bn = 0 and

∑∞
n=1 anbn = ∞; zn ∈ Txn, un ∈ Tyn with

‖zn − un‖ ≤ H(Txn, T yn) + µn and ‖zn+1 − un‖ ≤ H(Txn+1, T yn) + µn where µn ∈
(0,∞) such that lim

n→∞
µn = 0.

It is notable that Song and Wang [30] needed the condition Tp = {p} in order to
prove their result (Theorem 1). Actually, Panyanak [25] proved some results using
Ishikawa type iterative process without this condition. Song and Wang [30] showed
that without this condition his process was not well-defined. They reconstructed the
process using the condition Tp = {p} which made it well-defined. Such a condition
was also used by Jung [15]. Later, Shazad and Zegeye [31] got rid of this condition
by using

(3) PT (x) = {y ∈ Tx : ‖x− y‖ = d(x, Tx)}.

for a multivalued mapping T : K → P(K). They obtaind a couple of strong conver-
gence results using Ishikawa type iterative process.
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Khan and Yildirim [18] used the following iterative process using the method of
direct construction of Cauchy sequence and without using the condition Tp = {p}.
Starting x1 ∈ K, define sequence {xn} as follows:-

xn+1 = (1− λ)vn + λun,

yn = (1− µ)xn + µvn, n ∈ N
(4)

where vn ∈ PT (xn) and un ∈ PT (yn) and 0 < λ, µ < 1.

In 2014, Khan et al. [16] introduced the following iterative process for a multivalued
mapping T : K → P(K) using PT defined by (3) above.

xn+1 = (1− αn)vn + αnwn,

yn = (1− βn)un + βnwn

zn = (1− γn)xn + γnun

(5)

where αn, βn, γn ∈ [0, 1] and un ∈ PT (xn), vn ∈ PT (yn), wn ∈ PT (zn). Its single-valued
version was used by Abbas and Nazir [2].

For simplicity, Khan et al. [16] used the following simplified version of (5):

xn+1 = (1− α)vn + αwn,

yn = (1− β)un + βwn

zn = (1− γ)xn + γun

(6)

where α, β, γ ∈ [0, 1] and un ∈ PT (xn), vn ∈ PT (yn), wn ∈ PT (zn).

Note that Khan et al. [16] used α, β, and γ only for the sake of simplicity and
αn, βn, and γn could be used equally well under suitable conditions. Moreover, they
claimed that it is faster than all of Picard, Mann and Ishikawa iterative processes
in case of contractions [2]. Their results are independent but better (in the sense of
speed of convergence of iterative process) and more general (in view of more general
class of mappings) than corresponding results of Khan and Yildirim [18], Shazad and
Zegeye [31], and Song and Cho [28] and the related results therein.

A multivalued nonexpansive mapping T : K → CB(K) is said to satisfy Condi-
tion (I) if there exists a continuous nondecreasing function f : [0,∞)→ [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F (T )) for all x ∈ K.

We mention some of results by Khan et al. [16] as follows.

Theorem 1.3. Let E be a real Banach space and K be a nonempty compact convex
subset of E. Let T : K → P(K) be a multivalued mapping such that F (T ) 6= ∅ and
PT is quasi-nonexpansive mapping. Let {xn} be the sequence as defined in (6) Then
{xn} converges strongly to a fixed point of T.

Theorem 1.4. Let E be a real Banach space, K a nonempty closed and convex
subset of E and T : K → P(K) a multivalued mapping satisfying Condition(I) such
that F (T ) 6= ∅ and PT is quasi-nonexpansive mapping. Then the sequence {xn}
defined by (6) converges strongly to a fixed point p of T .

The purpose of this manuscript is to extend and improve some corresponding results
by Khan et al. [16] in the setting of CAT(0) spaces.
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2. Preliminaries

2.1. CAT(0) spaces. Let (X, d) be a metric space. A geodesic path joining x ∈ X
to y ∈ X (or, more briefly, a geodesic from x to y) is a map ω : [0, a]→ X, [0, a] ⊂ R
such that ω(0) = x, ω(a) = y, and d(ω(m), ω(n)) = |m − n| for all m,n ∈ [0, a]. In
particular, ω is an isometry and d(x, y) = a. The image α of ω is called a geodesic (or
metric) segment joining x and y. A unique geodesic segment from x to y is denoted
by [x, y]. The space (X, d) is called to be a geodesic space if every two points of X
are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. If Y ⊆ X then Y is said to be convex if Y
includes every geodesic segment joining any two of its points. If (X, d) is a geodesic
metric space, a geodesic triangle ∆(a1, a2, a3) consists of three points a1, a2, a3 in X
(the vertices of ∆) and a geodesic segment between each pair of vertices (the edges
of ∆). A comparison triangle for geodesic triangle ∆(a1, a2, a3) in (X, d) is a triangle
∆̄(a1, a2, a3) := ∆(ā1, ā2, ā3) in the Euclidean plane R2 satisfying dR2(āi, āj) = d(ai, aj)
for i, j ∈ 1, 2, 3. Such a triangle always exists (see [3]).

Definition 2.1. A geodesic space (X, d) is said to be a CAT(0) space if for any
geodesic triangle ∆ ⊂ X and a, b ∈ ∆ we have d(a, b) ≤ d(ā, b̄) where ā, b̄ ∈ ∆̄.

Remark 2.2. Any complete, simply connected Riemannian manifold having non-
positive sectional curvature is a CAT(0) space. Other examples of CAT(0) spaces
include pre-Hilbert spaces, R-trees, Euclidean buildings, the complex Hilbert ball
with a hyperbolic metric, (see [3, 4, 12] for example).

Definition 2.3. A geodesic triangle ∆(p, q, r) in (X, d) is said to satisfy the
CAT(0) inequality if for any u, v ∈ ∆(p, q, r) and for their comparison points ū, v̄ ∈
∆̄(p̄, q̄, r̄), one has

d(u, v) ≤ dR2(ū, v̄).

For other equivalent definitions and basic properties of CAT(0) spaces, we refer the
readers to standard texts such as [3].

Note that if x, a1, a2 are points of CAT(0) space and if a0 is the midpoint of the
segment [a1, a2] (we write a0 = 1

2
a1
⊕

1
2
a2), then the CAT(0) inequality implies

(7) d(x, a0)
2 = d(x,

1

2
a1
⊕ 1

2
a2) ≤

1

2
d(x, a1)

2 +
1

2
d(x, a2)

2 − 1

4
d(a1, a2)

2.

The inequality (7) is called the CN inequality of Bruhat and Tits [5]. We refer
readers to some brilliant known CAT(0) space results in [1,7,8,22,23] and references
therein.

We now collect some useful facts about CAT(0) spaces which will be crucial in the
proofs of our main results.

Lemma 2.4. ( [8]) Let (X, d) be a CAT(0) space.

(i) For x1, x2 ∈ X and α ∈ [0, 1], there exists a unique point y ∈ [x1, x2] such that

(8) d(x1, y) = αd(x1, x2) and d(x2, y) = (1− α)d(x1, x2).

We write y = (1− α)x1
⊕

αx2 for the unique point y satisfying (8).
(ii) For x, y, z ∈ X and α ∈ [0, 1], we have

d
(
(1− α)x

⊕
αy, z

)
≤ (1− α)d(x, z) + αd(y, z).
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2.2. Hyperbolic spaces. In this sectionn we recall some notions of the hyperbolic
spaces. This class of spaces contains the class of CAT(0) spaces (see [19]).

Definition 2.5. [19] Let (X, d) be a metric space and W : X × X × [0, 1] → X
be a mapping satisfying:-

W1. d(z,W(x, y, α)) ≤ (1− α)d(z, x) + αd(z, y),
W2. d(W(x, y, α),W(x, y, β)) = |α− β|d(x, y),
W3. W(x, y, α) =W(y, x, (1− α)),
W4. d(W(x, z, α),W(y, w, α)) ≤ (1− α)d(x, y) + αd(z, w)

for all x, y, z, w ∈ X,α, β ∈ [0, 1]. We call the triple (X, d,W) a hyperbolic space.

It follows from (W1.) that, for each x, y ∈ X and α ∈ [0, 1],

(9) d(x,W(x, y, α)) ≤ αd(x, y), d(y,W(x, y, α)) ≤ (1− α)d(x, y)

In fact, we can get that (see [23]),

(10) d(x,W(x, y, α)) = αd(x, y), d(y,W(x, y, α)) = (1− α)d(x, y).

Similar to (8), we can also use the notation (1− α)x
⊕

αy for such point W(x, y, α)
in a hyperbolic space.

A mapping η : (0,∞)× (0, 2]→ (0, 1] providing such a δ := η(r, ε) for given r > 0
and ε ∈ (0, 2] is called a modulus of uniform convexity.

Definition 2.6. [9, 13] Let (X, d,W) be a hyperbolic metric space. X is said to
be uniformly convex whenever δ(r, ε) > 0, for any r > 0 and ε > 0, where

δ(r, ε) = inf
{

1− 1

r
d(

1

2
x
⊕ 1

2
y, a) : d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

}
for any a ∈ X.

Note that if X is a uniformly convex hyperbolic space, then for every s ≥ 0 and
ε > 0, there exists η(s, ε) > 0 such that δ(r, ε) > η(s, ε) > 0 for any r > s. One can
see that δ(r, 0) = 0. Moreover δ(r, ε) is an increasing function of ε.

We recall that a Banach space E is said to satisfy Opial’s condition [24] if for any
sequence {xn} in E, {xn} converges weakly to x implies that lim supn→∞ ‖xn − x‖ <
lim supn→∞ ‖xn − y‖ for all y ∈ E with y 6= x. Examples of Banach spaces satisfying
Opial’s condition are Hilbert spaces and all lp spaces (1 < p < ∞). On the other
hand, Lp[0, 2π] with 1 < p 6= 2 fail to satisfy this condition. A multivalued mapping
T : K → CB(K) is called demiclosed at y ∈ K if for any sequence {xn} in K
converging weakly to x and yn ∈ Txn converging strongly to y, we have y ∈ Tx.

Now we state some useful lemmas.

Lemma 2.7. [28] Let T : K → P(K) be a multivalued mapping and PT (x) = {y ∈
Tx : d(x, y) = d(x, Tx)}. Then the following are equivalent.

(i) x ∈ F (T ).
(ii) PT (x) = {x}.
(iii) x ∈ F (PT ).

Moreover, F (T ) = F (PT ).
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Proposition 2.8. (The Demiclosed principle) [23] Let K be a closed and
convex subset of a complete CAT(0) space E, and T : K → K be an asymptotic
pointwise nonexpansive mapping. Let {xn} be a bounded sequence in K such that
lim
n→∞

d(xn, Txn) = 0, and {xn} conveges weakly to w. Then Tw = w.

The following result is a characterization of uniformly convex hyperbolic spaces
which is an analog of Shu ([26] Lemma 1.3). It can be applied in a CAT(0) space.

Lemma 2.9. [10,23] Let (X, d,W) be a uniformly convex hyperbolic space. Let r ∈
[0,+∞) and a ∈ X be such that such that lim supn→∞ d(xn, a) ≤ r, lim supn→∞ d(yn, a) ≤
r, and lim

n→∞
d((1 − αn)xn

⊕
αnyn, p) = r for some r ≥ 0, where αn ∈ [a, b], with

0 < a ≤ b < 1. Then we have

lim
n→∞

d(xn, yn) = 0.

Remark 2.10. More details on a uniformly convex hyperbolic space with modulus
of convexity η, we refer readers to [19].

In this manuscript, inspired and motivated by above results and the works of Khan
et al. [16], we establish strong and weak convergence theorems for fixed points of
multivalued quasi-nonexpansive mappings in the setting of CAT(0) spaces. Our results
extend and improve the results in [16], as well as some other related results in the
literature.

3. Main results

In this section, E will denote a CAT(0) space. Following Khan et al. [16], we
introduce the following definitions.

Definition 3.1. Let K be a nonempty convex subset of a CAT(0) space E. Let
T : K → P(K), define sequence {xn} as follows:

xn+1 = (1− α)vn
⊕

αwn

yn = (1− β)un
⊕

βwn

zn = (1− γ)xn
⊕

γun

(11)

where α, β, γ ∈ [0; 1];un ∈ PT (xn); vn ∈ PT (yn); wn ∈ PT (zn), and PT (x) = {y ∈ Tx :
d(x, y) = d(x, Tx)}.

Definition 3.2. Let K be a nonempty convex subset of a CAT(0) space E. A
multivalued mapping T : K → P(K) is said to be:

(a) nonexpansive if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ K,
(b) quasi-nonexpansive if H(Tx, Tp) ≤ d(x, p) for all x ∈ K and p ∈ F (T ).

We prove the following lemma.

Lemma 3.3. Let E be a CAT(0) space and K a nonempty closed convex subset of
E. Let T : K → P(K) be a multivalued mapping such that F (T ) 6= ∅ and PT is a
quasi-nonexpansive multimaping. Let {xn} be the sequence generated by (11). Then
lim
n→∞

d(xn, p) exists for all p ∈ F (T ) and lim
n→∞

d(xn,PT (xn)) = 0.
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Proof. We first prove that lim
n→∞

d(xn, p) exists, for all p ∈ F (T ). By applying

Lemma 2.4 (ii), we have

d(xn+1, p) = d
(
(1− α)vn

⊕
αwn, p

)
≤ (1− α)d(vn, p) + αd(wn, p)

≤ (1− α)H(PT (yn),PT (p)) + αH(PT (zn),PT (p))

≤ (1− α)d(yn, p) + αd(zn, p).

(12)

Next

d(yn, p) = d
(
(1− β)un

⊕
βwn, p

)
≤ (1− β)d(un, p) + βd(wn, p)

≤ (1− β)H(PT (xn),PT (p)) + βH(PT (zn),PT (p))

≤ (1− β)d(xn, p) + βd(zn, p).

(13)

And

d(zn, p) = d
(
(1− γ)xn

⊕
γun, p

)
≤ (1− γ)d(xn, p) + γd(un, p)

≤ (1− β)d(xn, p) + βH(PT (xn),PT (p))

≤ (1− α)d(xn, p) + αd(xn, p)

= d(xn, p).

(14)

Therefore, from (13) and (14) we get

(15) d(yn, p) ≤ d(xn, p).

From (12), (14) and (15), we obtain

(16) d(xn+1, p) ≤ d(xn, p).

This implies that lim
n→∞

d(xn, p) exists for each p ∈ F (T ). Suppose that

(17) lim
n→∞

d(xn, p) = r,

where r ≥ 0.
We now show that

lim
n→∞

d(xn,PTxn) = 0.

The case when r = 0 is obvious. We thus assume that r > 0. In as much as
d(xn,PTxn) ≤ d(xn, un), it suffices to prove that lim

n→∞
d(xn, un) = 0.

Now

d(un, p) ≤ H(PT (xn),PT (p)) ≤ d(xn, p)

implies that

(18) lim sup
n→∞

d(un, p) ≤ r.

From (14), (15) and (17), we obtain

(19) lim sup
n→∞

d(zn, p) ≤ r,
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and

(20) lim sup
n→∞

d(yn, p) ≤ r.

Noting that
d(vn, p) ≤ H(PT (yn),PT (p)) ≤ d(yn, p) ≤ d(xn, p),

we have

(21) lim sup
n→∞

d(vn, p) ≤ r.

Similarly, we can get

(22) lim sup
n→∞

d(wn, p) ≤ r.

Moreover,

lim
n→∞

d(xn+1, p) = lim
n→∞

d
(
(1− α)vn

⊕
αwn, p

)
≤ lim

n→∞

(
(1− α)d(vn, p) + αd(wn, p)

)
= r.

This implies

(23) lim
n→∞

d
(
(1− α)vn

⊕
αwn, p

)
= r.

From (21), (22), (23) and Lemma 2.9, we have

lim
n→∞

d(vn, wn) = 0.

Together with this and

lim inf
n→∞

d(xn+1, p) ≤ lim inf
n→∞

(
(1− α)d(vn, p) + αd(wn, p)

)
,

we obtain

(24) r ≤ lim inf
n→∞

d(vn, p).

From (21) and (24), we get
lim
n→∞

d(vn, p) = r.

Similarly to above, it follows that

lim
n→∞

d(zn, p) = r.

That is

r = lim
n→∞

d(zn, p) = lim
n→∞

d
(
(1− γ)xn

⊕
γun, p

)
≤ lim

n→∞

(
(1− γ)d(xn, p) + γd(un, p)

)
= r.

(25)

Therefore, from (17), (18), (25) and Lemma 2.9 we get

(26) lim
n→∞

d(xn, un) = 0

which yields lim
n→∞

d(xn,PT (xn)) = 0 as desired.

We now state and prove our strong convergence theorem.
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Theorem 3.4. Let E be a CAT(0) space and K be a nonempty compact convex
subset of E. Let T : K → P(K) be a multivalued mapping such that F (T ) 6= ∅ and
PT is a quasi-nonexpansive multimaping. Let {xn} be the sequence as generated by
(11). Then {xn} converges strongly to a fixed point of T.

Proof. By Lemma 3.3, we know that lim
n→∞

d(xn, p) exists for all p ∈ F (T ). Now, since

K is compact, there exists a subsequence {xnk
} of {xn} such that lim

n→∞
d(xnk

, q) = 0

for some q ∈ K. By Lemma 3.3, we have lim
n→∞

d(xnk
, unk

) = 0. Thus, we have

d(q,PT (q)) ≤ d(q, xnk
) + d(xnK

,PT (xnk
)) +H(PT (xnk

),PT (q))

≤ d(q, xnk
) + d(xnK

, unk
) + d(xnk

, q)→ 0 as n→∞.

That is, d(q,PT (q)) = 0. Hence q is a fixed point of PT . Since F (PT ) = F (T ) by
Lemma 2.7, {xn} converges strongly to a fixed point of T .

Example 3.5. Let (R2, ‖ �‖) be a normed space with usual norm, and K = [0, 1]×
[0, 1]. Here R is the set of real numbers. Define T : K → P(K) by

T (x, y) = {(0, 2b+ 1

4
) : 0 ≤ b ≤ max{x, y}}.

Obviously, K is a compact convex subset of R2. Note that F (T ) = {(x, y) : (x, y) ∈
T (x, y)} = {(0, 2b+ 1

4
) : 0 ≤ b ≤ 1

2
}. Let α, β, γ =

1

2
.

Observe that PT (x, y) = {(x, y)} whenever (x, y) ∈ {(0, 2y + 1

4
) : 0 ≤ y ≤ 1

2
}. In

case (x, y) /∈ {(0, 2y + 1

4
) : 0 ≤ y ≤ 1

2
},

PT (x, y) = {(x′, y′) ∈ T (x, y) : d((x, y), (x′, y′)) = d
(
(x, y), {(0, 2y + 1

4
) : 0 ≤ y ≤ 1

2
}

= {(x′, y′) ∈ T (x, y) : d((x, y), (x′, y′)) = |x| = x}

= {(x′, y′) = (0,
2y + 1

4
), where 0 ≤ y ≤ 1

2
}.

We next prove that PT (x, y) is quasi-nonexpansive for all (x, y) ∈ K. The case of

{(0, 2b+ 1

4
) : 0 ≤ b ≤ 1

2
} is trivial. Thus we take (x, y) ∈ {(0, 2y + 1

4
) :

1

2
≤ y ≤ 1}.

H
(
PT (x, y),PT (0, p)

)
= H

(
(0,

2y + 1

4
), (0, p)

)
= |2y + 1

4
− p| ≤ d

(
(x, y), (0, p)

)
for all (x, y) ∈ {(0, 2y + 1

4
) :

1

2
≤ y ≤ 1}. Finally, we generate a sequence {xn} as

defined in (11) and show that it converges strongly to a fixed point of T .
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Choose x1 = (x′1, x
′
2) = (0, 1) ∈ K. Then PT (x1) = {(0, 2x′2 + 1

4
)} = {(0, 2(1) + 1

4
)} =

{(0, 1

2
+

1

4
)} and u1 ∈ PT (x1) = {(0, 1

2
+

1

4
)}. That is, u1 = (0,

1

2
+

1

4
). Then

z1 = (z′1, z
′
2) = (1− γ)x1

⊕
γu1 =

1

2
(0, 1) +

1

2
(0,

1

2
+

1

4
)

= (0,
1

2
+

1

4
+

1

8
) = (0,

7

8
),

PT (z1) = {(0, 2z′2 + 1

4
)} = {(0,

2(7
8
) + 1)

4
)}

= {(0, 11

16
)}.

Choose w1 ∈ PT (z1) = {(0, 11

16
)}. That is, w1 = (0,

11

16
). Then

y1 = (1− β)u1
⊕

βw1 =
1

2
(0,

3

4
) +

1

2
(0,

11

16
)

= (0,
23

32
) = (y′1, y

′
2),

PT (y1) = {(0, 2y′2 + 1

4
)} = {(0,

2(23
32

) + 1)

4
}

= {(0, 1

2
+

7

64
)}.

Choose v1 ∈ PT (y1) = {(0, 1

2
+

7

64
)}. That is, v1 = (0,

1

2
+

7

64
) = (0,

39

64
). Then

x2 = (x′′1, x
′′
2) = = (1− α)v1

⊕
αw1 =

1

2
(0,

39

64
) +

1

2
(0,

11

16
)

= (0,
1

2
+

19

128
) = (0,

83

128
),

where x′′2 =
1

2
+

19

128
<

1

2
+

1

4
and

PT (x2) = {(0, 2x′′2 + 1

4
)} = {(0,

2( 83
128

) + 1)

4
}

= {(0, 1

2
+

19

256
)} = {(0, 147

256
)}.
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Now choose u2 ∈ PT (x2) = {(0, 1

2
+

19

256
)} That is, u2 = (0,

1

2
+

19

256
) = (0,

147

256
). Then

z2 = (1− γ)x2
⊕

γu2 =
1

2
(0,

83

128
) +

1

2
(0,

147

256
)

= (0,
1

2
+

57

512
) = (0,

313

512
) = (z′′1 , z

′′
2 ),

PT (z2) = {(0, 2z′′2 + 1

4
)} = {(0,

2(313
512

) + 1)

4
}

= {(0, 1

2
+

57

1024
)}.

Choose w2 ∈ PT (z2) = {(0, 1

2
+

57

1024
)}. That is, w2 = (0,

1

2
+

57

1024
) = (0,

569

1024
).

Then

y2 = (1− β)u2
⊕

βw2

=
1

2
(0,

147

256
) +

1

2
(0,

569

1024
)

= (0,
1

2
+

133

2048
) = (0,

1157

2048
) = (y′′1 , y

′′
2),

PT (y2) = {(0, 2(y′′2) + 1

4
)} = {(0,

2(
1157

2048
) + 1

4
)} = {(0, 2181

4096
)}

= {(0, 1

2
+

133

4096
)}.

Choose v2 ∈ PT (y2) = {(0, 1

2
+

133

4096
)}. That is, v2 = (0,

1

2
+

133

4096
) = (0,

2181

2048
). Then

x3 = (x′′′1 , x
′′′
2 ) = (1− α)v2

⊕
αw2

=
1

2
(0,

2181

4096
) +

1

2
(0,

569

1024
) = (0,

1

2
+

361

8192
)

where x′′′2 =
1

2
+

361

8192
<

1

2
+

1

6
.

...

In a similar method, one can obtain a sequence {xn} which converges strongly to a

point (0,
1

2
) ∈ F (T ) where F (T ) = {(0, 2b+ 1

4
) : 0 ≤ b ≤ 1

2
}.

We also obtain the following strong convergence theorem in CAT(0) space via the
Condition (I) which is originally due to Senter and Dotson [29].

Recall that a multivalued nonexpansive mapping T : K → CB(K) is said to satisfy
Condition (I) if there exists a continuous nondecreasing function f : [0,∞)→ [0,∞)
with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that f(d(x, F (T )) ≤ d(x, Tx) for all
x ∈ K.

Theorem 3.6. Let E be a CAT(0) space, K a nonempty closed and convex subset
of E. And let T : K → P(K) be a multivalued mapping satisfying Condition(I) such
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that F (T ) 6= ∅ and PT is a quasi-nonexpansive multimaping. Then the sequence {xn}
defined by (11) converges strongly to a fixed point p of T .

Proof. By Lemma 3.3, lim
n→∞

d(xn, p) exists for all p ∈ F (T ) = F (PT ). If lim
n→∞

d(xn, p) =

0, it is obvious. Thus we asuume lim
n→∞

d(xn, p) > 0. Again from Lemma 3.3, we know

d(xn+1, p) ≤ d(xn, p) so that

d(xn+1, F (T )) ≤ d(xn, F (T )).

Hence lim
n→∞

d(xn+1, F (T )) exists. We now prove that lim
n→∞

d(xn+1, F (T )) = 0.

Since T satisfies Condition(I), we have f(d(xn, F (T ))) ≤ d(xn, Txn)→ 0 as n→∞.
Thus lim

n→∞
d(xn+1, F (T )) = 0 Thus there is a subsequence {xnk

} of {xn} such that

d(xnk
, pk) <

1

2k
for some {pk} ⊂ F (T ) and all k. Note that in the proof of Lemma

3.3 we obtain

d(xnk+1, pk) ≤ d(xnk
, pk) <

1

2k
.

We now show that {pk} is a Cauchy sequence in K. Notice that

d(pk+1, pk) ≤ d(pk+1, xnk+1) + d(xnk+1, pk)

<
1

2k+1
+

1

2k

<
1

2k−1 .

This shows that {pk} is a Cauchy sequence in K and thus converges to q ∈ K. Since

d(pk, T q) ≤ H(Tpk, T q)

≤ d(pk, q)

and pk → q as k → ∞, it follows that d(q, T q) = 0 and thus q ∈ F (T ) and {xnk
}

converges strongly to q. Since lim
n→∞

d(xn, q) exists, it follows that {xn} converges

strongly to q. This completes our proof.

We now prove a weak convergence theorem via the sequence as defined in (11)

Theorem 3.7. Let E be a CAT(0) space satisfying Opial’s condition and K a
nonempty closed convex subset of E. Let T : K → P(K) be a multivalued mapping
such that F (T ) 6= ∅ and PT is a quasi-nonexpansive multimaping. Let {xn} be the
sequence as defined in (11). Let I−PT be demiclosed with respect to zero, then {xn}
converges weakly to a fixed point p of T .

Proof. Let p ∈ F (T ) = F (PT ). By Lemma 3.3, lim
n→∞

d(xn, p) exists for all p ∈ F (T ).

Now we prove that {xn} has a unique weak subsequential limit in F (T ).
Let z1 and z2 be weak limits of the subsequences {xni

} and {xnj
}, respectively. By

(26), there exists un ∈ Txn such that lim
n→∞

d(xn, un) = 0. Since I − PT is demiclosed

with respect to zero, we obtain z1 ∈ F (PT ) = F (T ). Similarly, we can prove that
z2 ∈ F (T ). To prove uniqueness, suppose that z1 6= z2. Then by Opial’s condition,
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we have

lim
n→∞

d(xn, z1) = lim
n→∞

d(xni
, z1)

< lim
n→∞

d(xni
, z2)

= lim
n→∞

d(xn, z2)

= lim
n→∞

d(xnj
, z2)

< lim
n→∞

d(xnj
, z1)

= lim
n→∞

d(xn, z1).

This is a contradiction. Hence {xn} converges weakly to a point in F (T ).
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